Two vectors with the same normal surface projection and the same normal surface cross product, are equal?
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I have to vectors $mathbf a$ and $mathbf b$, that fulfill the following conditions:
$(mathbf a-mathbf b)cdot mathbf n=mathbf 0$
$(mathbf a-mathbf b)times mathbf n=mathbf 0$
being $mathbf n$ a unit surface normal.
My question is, is $mathbf a = mathbf b$ ?
I have confirmed this by doing the cross product in a reference frame for which its first direction is coincident with the surface normal. Since both the dot and cross products are invariant under reference frame transformations, the results should be confirmed for all coordinate systems. Is this reasoning ok?
geometry vectors cross-product
add a comment |Â
up vote
3
down vote
favorite
I have to vectors $mathbf a$ and $mathbf b$, that fulfill the following conditions:
$(mathbf a-mathbf b)cdot mathbf n=mathbf 0$
$(mathbf a-mathbf b)times mathbf n=mathbf 0$
being $mathbf n$ a unit surface normal.
My question is, is $mathbf a = mathbf b$ ?
I have confirmed this by doing the cross product in a reference frame for which its first direction is coincident with the surface normal. Since both the dot and cross products are invariant under reference frame transformations, the results should be confirmed for all coordinate systems. Is this reasoning ok?
geometry vectors cross-product
A slick one-liner proof: $$ mathbfa=(mathbfacdotmathbfn)mathbfn-(mathbfatimesmathbfn)timesmathbfn=dots=mathbfb $$
â user10354138
20 mins ago
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I have to vectors $mathbf a$ and $mathbf b$, that fulfill the following conditions:
$(mathbf a-mathbf b)cdot mathbf n=mathbf 0$
$(mathbf a-mathbf b)times mathbf n=mathbf 0$
being $mathbf n$ a unit surface normal.
My question is, is $mathbf a = mathbf b$ ?
I have confirmed this by doing the cross product in a reference frame for which its first direction is coincident with the surface normal. Since both the dot and cross products are invariant under reference frame transformations, the results should be confirmed for all coordinate systems. Is this reasoning ok?
geometry vectors cross-product
I have to vectors $mathbf a$ and $mathbf b$, that fulfill the following conditions:
$(mathbf a-mathbf b)cdot mathbf n=mathbf 0$
$(mathbf a-mathbf b)times mathbf n=mathbf 0$
being $mathbf n$ a unit surface normal.
My question is, is $mathbf a = mathbf b$ ?
I have confirmed this by doing the cross product in a reference frame for which its first direction is coincident with the surface normal. Since both the dot and cross products are invariant under reference frame transformations, the results should be confirmed for all coordinate systems. Is this reasoning ok?
geometry vectors cross-product
geometry vectors cross-product
asked 56 mins ago
nodarkside
205
205
A slick one-liner proof: $$ mathbfa=(mathbfacdotmathbfn)mathbfn-(mathbfatimesmathbfn)timesmathbfn=dots=mathbfb $$
â user10354138
20 mins ago
add a comment |Â
A slick one-liner proof: $$ mathbfa=(mathbfacdotmathbfn)mathbfn-(mathbfatimesmathbfn)timesmathbfn=dots=mathbfb $$
â user10354138
20 mins ago
A slick one-liner proof: $$ mathbfa=(mathbfacdotmathbfn)mathbfn-(mathbfatimesmathbfn)timesmathbfn=dots=mathbfb $$
â user10354138
20 mins ago
A slick one-liner proof: $$ mathbfa=(mathbfacdotmathbfn)mathbfn-(mathbfatimesmathbfn)timesmathbfn=dots=mathbfb $$
â user10354138
20 mins ago
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
Yes it is correct, indeed we have that
- $(vec a-vec b)times vec n=vec 0 implies vec a-vec b$ is a multiple of $vec n$ that is $vec a-vec b=kvec n$
- $(vec a-vec b)cdot vec n=0 implies vec a-vec b$ is orthogonal to $vec n$ that is $kvec ncdot vec n=0 implies k=0$
therefore
$$vec a-vec b=vec 0 implies vec a=vec b$$
Thanks very much @gimusi !
â nodarkside
45 mins ago
@nodarkside You are welcome! Bye
â gimusi
44 mins ago
add a comment |Â
up vote
3
down vote
You could also do this using the fact that $vecv cdot vecw = vertvecvrvert lvert vecw rvert costheta$ and $vecv times vecw = vertvecvrvert lvert vecw rvert sintheta$. In your case this leads to
beginalign*
(veca - vecb) cdot vecn = lvertveca - vecbrvert lvertvecnrvert costheta &= 0 \
(veca - vecb) times vecn = lvertveca - vecbrvert lvertvecnrvert sintheta &= 0
endalign*
From here, it is safe to cancel the $lvertvecnrvert$, as it is unit normal. We cannot safely cancel out the $costheta$ or $sintheta$ because these may be $0$, but notice that if $sintheta$ = 0, then $costheta neq 0$ and vice versa. Thus, we are left to the conclusion that $lvert veca - vecb rvert = 0$, so $veca = vecb$.
New contributor
Thanks very much @Alerra! This proof is also very useful.
â nodarkside
7 mins ago
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Yes it is correct, indeed we have that
- $(vec a-vec b)times vec n=vec 0 implies vec a-vec b$ is a multiple of $vec n$ that is $vec a-vec b=kvec n$
- $(vec a-vec b)cdot vec n=0 implies vec a-vec b$ is orthogonal to $vec n$ that is $kvec ncdot vec n=0 implies k=0$
therefore
$$vec a-vec b=vec 0 implies vec a=vec b$$
Thanks very much @gimusi !
â nodarkside
45 mins ago
@nodarkside You are welcome! Bye
â gimusi
44 mins ago
add a comment |Â
up vote
4
down vote
accepted
Yes it is correct, indeed we have that
- $(vec a-vec b)times vec n=vec 0 implies vec a-vec b$ is a multiple of $vec n$ that is $vec a-vec b=kvec n$
- $(vec a-vec b)cdot vec n=0 implies vec a-vec b$ is orthogonal to $vec n$ that is $kvec ncdot vec n=0 implies k=0$
therefore
$$vec a-vec b=vec 0 implies vec a=vec b$$
Thanks very much @gimusi !
â nodarkside
45 mins ago
@nodarkside You are welcome! Bye
â gimusi
44 mins ago
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Yes it is correct, indeed we have that
- $(vec a-vec b)times vec n=vec 0 implies vec a-vec b$ is a multiple of $vec n$ that is $vec a-vec b=kvec n$
- $(vec a-vec b)cdot vec n=0 implies vec a-vec b$ is orthogonal to $vec n$ that is $kvec ncdot vec n=0 implies k=0$
therefore
$$vec a-vec b=vec 0 implies vec a=vec b$$
Yes it is correct, indeed we have that
- $(vec a-vec b)times vec n=vec 0 implies vec a-vec b$ is a multiple of $vec n$ that is $vec a-vec b=kvec n$
- $(vec a-vec b)cdot vec n=0 implies vec a-vec b$ is orthogonal to $vec n$ that is $kvec ncdot vec n=0 implies k=0$
therefore
$$vec a-vec b=vec 0 implies vec a=vec b$$
answered 52 mins ago
gimusi
73.9k73889
73.9k73889
Thanks very much @gimusi !
â nodarkside
45 mins ago
@nodarkside You are welcome! Bye
â gimusi
44 mins ago
add a comment |Â
Thanks very much @gimusi !
â nodarkside
45 mins ago
@nodarkside You are welcome! Bye
â gimusi
44 mins ago
Thanks very much @gimusi !
â nodarkside
45 mins ago
Thanks very much @gimusi !
â nodarkside
45 mins ago
@nodarkside You are welcome! Bye
â gimusi
44 mins ago
@nodarkside You are welcome! Bye
â gimusi
44 mins ago
add a comment |Â
up vote
3
down vote
You could also do this using the fact that $vecv cdot vecw = vertvecvrvert lvert vecw rvert costheta$ and $vecv times vecw = vertvecvrvert lvert vecw rvert sintheta$. In your case this leads to
beginalign*
(veca - vecb) cdot vecn = lvertveca - vecbrvert lvertvecnrvert costheta &= 0 \
(veca - vecb) times vecn = lvertveca - vecbrvert lvertvecnrvert sintheta &= 0
endalign*
From here, it is safe to cancel the $lvertvecnrvert$, as it is unit normal. We cannot safely cancel out the $costheta$ or $sintheta$ because these may be $0$, but notice that if $sintheta$ = 0, then $costheta neq 0$ and vice versa. Thus, we are left to the conclusion that $lvert veca - vecb rvert = 0$, so $veca = vecb$.
New contributor
Thanks very much @Alerra! This proof is also very useful.
â nodarkside
7 mins ago
add a comment |Â
up vote
3
down vote
You could also do this using the fact that $vecv cdot vecw = vertvecvrvert lvert vecw rvert costheta$ and $vecv times vecw = vertvecvrvert lvert vecw rvert sintheta$. In your case this leads to
beginalign*
(veca - vecb) cdot vecn = lvertveca - vecbrvert lvertvecnrvert costheta &= 0 \
(veca - vecb) times vecn = lvertveca - vecbrvert lvertvecnrvert sintheta &= 0
endalign*
From here, it is safe to cancel the $lvertvecnrvert$, as it is unit normal. We cannot safely cancel out the $costheta$ or $sintheta$ because these may be $0$, but notice that if $sintheta$ = 0, then $costheta neq 0$ and vice versa. Thus, we are left to the conclusion that $lvert veca - vecb rvert = 0$, so $veca = vecb$.
New contributor
Thanks very much @Alerra! This proof is also very useful.
â nodarkside
7 mins ago
add a comment |Â
up vote
3
down vote
up vote
3
down vote
You could also do this using the fact that $vecv cdot vecw = vertvecvrvert lvert vecw rvert costheta$ and $vecv times vecw = vertvecvrvert lvert vecw rvert sintheta$. In your case this leads to
beginalign*
(veca - vecb) cdot vecn = lvertveca - vecbrvert lvertvecnrvert costheta &= 0 \
(veca - vecb) times vecn = lvertveca - vecbrvert lvertvecnrvert sintheta &= 0
endalign*
From here, it is safe to cancel the $lvertvecnrvert$, as it is unit normal. We cannot safely cancel out the $costheta$ or $sintheta$ because these may be $0$, but notice that if $sintheta$ = 0, then $costheta neq 0$ and vice versa. Thus, we are left to the conclusion that $lvert veca - vecb rvert = 0$, so $veca = vecb$.
New contributor
You could also do this using the fact that $vecv cdot vecw = vertvecvrvert lvert vecw rvert costheta$ and $vecv times vecw = vertvecvrvert lvert vecw rvert sintheta$. In your case this leads to
beginalign*
(veca - vecb) cdot vecn = lvertveca - vecbrvert lvertvecnrvert costheta &= 0 \
(veca - vecb) times vecn = lvertveca - vecbrvert lvertvecnrvert sintheta &= 0
endalign*
From here, it is safe to cancel the $lvertvecnrvert$, as it is unit normal. We cannot safely cancel out the $costheta$ or $sintheta$ because these may be $0$, but notice that if $sintheta$ = 0, then $costheta neq 0$ and vice versa. Thus, we are left to the conclusion that $lvert veca - vecb rvert = 0$, so $veca = vecb$.
New contributor
edited 29 mins ago
New contributor
answered 42 mins ago
Alerra
1605
1605
New contributor
New contributor
Thanks very much @Alerra! This proof is also very useful.
â nodarkside
7 mins ago
add a comment |Â
Thanks very much @Alerra! This proof is also very useful.
â nodarkside
7 mins ago
Thanks very much @Alerra! This proof is also very useful.
â nodarkside
7 mins ago
Thanks very much @Alerra! This proof is also very useful.
â nodarkside
7 mins ago
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2924137%2ftwo-vectors-with-the-same-normal-surface-projection-and-the-same-normal-surface%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
A slick one-liner proof: $$ mathbfa=(mathbfacdotmathbfn)mathbfn-(mathbfatimesmathbfn)timesmathbfn=dots=mathbfb $$
â user10354138
20 mins ago