Calculating integral using summation notation
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I'm trying to understand $lim_nrightarrowinftyfrac3nsum_k=1^n((frac3kn)^2-(frac3kn))$. I believe we can take $a=0, b=3$ and so this is equivalent to $int_0^3(x^2-x) dx$. Is this correct?
calculus riemann-sum
add a comment |Â
up vote
3
down vote
favorite
I'm trying to understand $lim_nrightarrowinftyfrac3nsum_k=1^n((frac3kn)^2-(frac3kn))$. I believe we can take $a=0, b=3$ and so this is equivalent to $int_0^3(x^2-x) dx$. Is this correct?
calculus riemann-sum
2
Yes, this is correct.
â szw1710
4 hours ago
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I'm trying to understand $lim_nrightarrowinftyfrac3nsum_k=1^n((frac3kn)^2-(frac3kn))$. I believe we can take $a=0, b=3$ and so this is equivalent to $int_0^3(x^2-x) dx$. Is this correct?
calculus riemann-sum
I'm trying to understand $lim_nrightarrowinftyfrac3nsum_k=1^n((frac3kn)^2-(frac3kn))$. I believe we can take $a=0, b=3$ and so this is equivalent to $int_0^3(x^2-x) dx$. Is this correct?
calculus riemann-sum
calculus riemann-sum
asked 4 hours ago
confusedmath
1166
1166
2
Yes, this is correct.
â szw1710
4 hours ago
add a comment |Â
2
Yes, this is correct.
â szw1710
4 hours ago
2
2
Yes, this is correct.
â szw1710
4 hours ago
Yes, this is correct.
â szw1710
4 hours ago
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
3
down vote
accepted
If $f$ is Riemann integrable at $[a,b]$ then
$$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$
in your case
$$a=0, ; b=3,; f(x)=x^2-x$$
and
$$int_0^3f=frac 92$$
add a comment |Â
up vote
3
down vote
Recall that in general by Riemann sum
$$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$
and in your case by $a=0$, $b=3$ we have
$$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
If $f$ is Riemann integrable at $[a,b]$ then
$$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$
in your case
$$a=0, ; b=3,; f(x)=x^2-x$$
and
$$int_0^3f=frac 92$$
add a comment |Â
up vote
3
down vote
accepted
If $f$ is Riemann integrable at $[a,b]$ then
$$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$
in your case
$$a=0, ; b=3,; f(x)=x^2-x$$
and
$$int_0^3f=frac 92$$
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
If $f$ is Riemann integrable at $[a,b]$ then
$$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$
in your case
$$a=0, ; b=3,; f(x)=x^2-x$$
and
$$int_0^3f=frac 92$$
If $f$ is Riemann integrable at $[a,b]$ then
$$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$
in your case
$$a=0, ; b=3,; f(x)=x^2-x$$
and
$$int_0^3f=frac 92$$
answered 4 hours ago
Salahamam_ Fatima
34.1k21430
34.1k21430
add a comment |Â
add a comment |Â
up vote
3
down vote
Recall that in general by Riemann sum
$$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$
and in your case by $a=0$, $b=3$ we have
$$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$
add a comment |Â
up vote
3
down vote
Recall that in general by Riemann sum
$$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$
and in your case by $a=0$, $b=3$ we have
$$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Recall that in general by Riemann sum
$$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$
and in your case by $a=0$, $b=3$ we have
$$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$
Recall that in general by Riemann sum
$$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$
and in your case by $a=0$, $b=3$ we have
$$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$
answered 4 hours ago
gimusi
73.9k73889
73.9k73889
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2924446%2fcalculating-integral-using-summation-notation%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
Yes, this is correct.
â szw1710
4 hours ago