Calculating integral using summation notation

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












I'm trying to understand $lim_nrightarrowinftyfrac3nsum_k=1^n((frac3kn)^2-(frac3kn))$. I believe we can take $a=0, b=3$ and so this is equivalent to $int_0^3(x^2-x) dx$. Is this correct?










share|cite|improve this question

















  • 2




    Yes, this is correct.
    – szw1710
    4 hours ago














up vote
3
down vote

favorite












I'm trying to understand $lim_nrightarrowinftyfrac3nsum_k=1^n((frac3kn)^2-(frac3kn))$. I believe we can take $a=0, b=3$ and so this is equivalent to $int_0^3(x^2-x) dx$. Is this correct?










share|cite|improve this question

















  • 2




    Yes, this is correct.
    – szw1710
    4 hours ago












up vote
3
down vote

favorite









up vote
3
down vote

favorite











I'm trying to understand $lim_nrightarrowinftyfrac3nsum_k=1^n((frac3kn)^2-(frac3kn))$. I believe we can take $a=0, b=3$ and so this is equivalent to $int_0^3(x^2-x) dx$. Is this correct?










share|cite|improve this question













I'm trying to understand $lim_nrightarrowinftyfrac3nsum_k=1^n((frac3kn)^2-(frac3kn))$. I believe we can take $a=0, b=3$ and so this is equivalent to $int_0^3(x^2-x) dx$. Is this correct?







calculus riemann-sum






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 4 hours ago









confusedmath

1166




1166







  • 2




    Yes, this is correct.
    – szw1710
    4 hours ago












  • 2




    Yes, this is correct.
    – szw1710
    4 hours ago







2




2




Yes, this is correct.
– szw1710
4 hours ago




Yes, this is correct.
– szw1710
4 hours ago










2 Answers
2






active

oldest

votes

















up vote
3
down vote



accepted










If $f$ is Riemann integrable at $[a,b]$ then
$$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$



in your case
$$a=0, ; b=3,; f(x)=x^2-x$$
and
$$int_0^3f=frac 92$$






share|cite|improve this answer



























    up vote
    3
    down vote













    Recall that in general by Riemann sum



    $$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$



    and in your case by $a=0$, $b=3$ we have



    $$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$






    share|cite|improve this answer




















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2924446%2fcalculating-integral-using-summation-notation%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      3
      down vote



      accepted










      If $f$ is Riemann integrable at $[a,b]$ then
      $$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$



      in your case
      $$a=0, ; b=3,; f(x)=x^2-x$$
      and
      $$int_0^3f=frac 92$$






      share|cite|improve this answer
























        up vote
        3
        down vote



        accepted










        If $f$ is Riemann integrable at $[a,b]$ then
        $$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$



        in your case
        $$a=0, ; b=3,; f(x)=x^2-x$$
        and
        $$int_0^3f=frac 92$$






        share|cite|improve this answer






















          up vote
          3
          down vote



          accepted







          up vote
          3
          down vote



          accepted






          If $f$ is Riemann integrable at $[a,b]$ then
          $$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$



          in your case
          $$a=0, ; b=3,; f(x)=x^2-x$$
          and
          $$int_0^3f=frac 92$$






          share|cite|improve this answer












          If $f$ is Riemann integrable at $[a,b]$ then
          $$lim_nto +inftyfracb-ansum_k=1^nf(a+kfracb-an)=int_a^bf(x)dx$$



          in your case
          $$a=0, ; b=3,; f(x)=x^2-x$$
          and
          $$int_0^3f=frac 92$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 4 hours ago









          Salahamam_ Fatima

          34.1k21430




          34.1k21430




















              up vote
              3
              down vote













              Recall that in general by Riemann sum



              $$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$



              and in your case by $a=0$, $b=3$ we have



              $$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$






              share|cite|improve this answer
























                up vote
                3
                down vote













                Recall that in general by Riemann sum



                $$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$



                and in your case by $a=0$, $b=3$ we have



                $$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$






                share|cite|improve this answer






















                  up vote
                  3
                  down vote










                  up vote
                  3
                  down vote









                  Recall that in general by Riemann sum



                  $$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$



                  and in your case by $a=0$, $b=3$ we have



                  $$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$






                  share|cite|improve this answer












                  Recall that in general by Riemann sum



                  $$lim_nto inftyfracb-ansum_k=0^n fleft(a+kover n(b-a)right)=int_a^b f(x) dx$$



                  and in your case by $a=0$, $b=3$ we have



                  $$lim_nrightarrowinftyfrac3nsum_k=1^nleft(left(frac3knright)^2-frac3knright)=int_0^3(x^2-x) dx$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 4 hours ago









                  gimusi

                  73.9k73889




                  73.9k73889



























                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2924446%2fcalculating-integral-using-summation-notation%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      Long meetings (6-7 hours a day): Being “babysat” by supervisor

                      What does second last employer means? [closed]

                      One-line joke