Searching for a proof for a series identity
Clash Royale CLAN TAG#URR8PPP
up vote
5
down vote
favorite
The below identity I have found experimentally.
Question. Is this true? If so, may you provide a "slick" (or any) proof.
$$6sum_k=1^inftyfrack^2q^k(1-q^k)^2+12left(sum_k=1^inftyfrackq^k1-q^kright)^2=sum_k=1^inftyfrac(5k^3+k)q^k1-q^k.$$
nt.number-theory real-analysis sequences-and-series power-series q-identities
add a comment |Â
up vote
5
down vote
favorite
The below identity I have found experimentally.
Question. Is this true? If so, may you provide a "slick" (or any) proof.
$$6sum_k=1^inftyfrack^2q^k(1-q^k)^2+12left(sum_k=1^inftyfrackq^k1-q^kright)^2=sum_k=1^inftyfrac(5k^3+k)q^k1-q^k.$$
nt.number-theory real-analysis sequences-and-series power-series q-identities
add a comment |Â
up vote
5
down vote
favorite
up vote
5
down vote
favorite
The below identity I have found experimentally.
Question. Is this true? If so, may you provide a "slick" (or any) proof.
$$6sum_k=1^inftyfrack^2q^k(1-q^k)^2+12left(sum_k=1^inftyfrackq^k1-q^kright)^2=sum_k=1^inftyfrac(5k^3+k)q^k1-q^k.$$
nt.number-theory real-analysis sequences-and-series power-series q-identities
The below identity I have found experimentally.
Question. Is this true? If so, may you provide a "slick" (or any) proof.
$$6sum_k=1^inftyfrack^2q^k(1-q^k)^2+12left(sum_k=1^inftyfrackq^k1-q^kright)^2=sum_k=1^inftyfrac(5k^3+k)q^k1-q^k.$$
nt.number-theory real-analysis sequences-and-series power-series q-identities
nt.number-theory real-analysis sequences-and-series power-series q-identities
edited 1 hour ago


Robert Israel
40.5k46114
40.5k46114
asked 4 hours ago
T. Amdeberhan
15.7k225119
15.7k225119
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
3
down vote
Follow the comments of Lucia and note that
$$sum_nge 1fracn^2q^n(1-q^n)^2=qfrac,d,dqsum_nge 1fracnq^n1-q^n.$$
I believe the identity actually is the well known
$$qfrac,d,dqL=fracL^2-M12,$$
where
$$L=1-24sum_nge 1fracnq^n1-q^n;mbox
and;
M=1+240sum_nge 1fracn^3q^n1-q^n.$$
You can find it in here [https://en.wikipedia.org/wiki/Eisenstein_series].
add a comment |Â
up vote
1
down vote
$$ sum_k=1^infty frack^2 q^k(1-q^k)^2 = sum_n=1^infty sigma(n) n q^n$$
$$ sum_k=1^infty frack q^k1-q^k = sum_n=1^infty sigma(n) q^n$$
$$ left(sum_k=1^infty frack q^k1-q^kright)^2 = sum_n=1^infty sum_m=1^n-1 sigma(m) sigma(n-m) q^n $$
$$ sum_k=1^infty frack^3 q^k1-q^k = sum_n=1^infty sigma_3(n) q^n $$
so your identity is saying
$$ 6 n sigma(n) + 12 sum_m=1^n-1 sigma(m)sigma(n-m) = 5 sigma_3(n) + sigma(n)$$
Hmm, surely that's got to be known. Adding number-theory to the tags.
5
Such identities are obtained by multiplying Eisenstein series and decomposing the product in terms of modular forms. See Ramanujan's paper On certain arithmetical functions which includes this identity, Table IV line 1. ramanujan.sirinudi.org/Volumes/published/ram18.pdf
– Lucia
51 mins ago
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Follow the comments of Lucia and note that
$$sum_nge 1fracn^2q^n(1-q^n)^2=qfrac,d,dqsum_nge 1fracnq^n1-q^n.$$
I believe the identity actually is the well known
$$qfrac,d,dqL=fracL^2-M12,$$
where
$$L=1-24sum_nge 1fracnq^n1-q^n;mbox
and;
M=1+240sum_nge 1fracn^3q^n1-q^n.$$
You can find it in here [https://en.wikipedia.org/wiki/Eisenstein_series].
add a comment |Â
up vote
3
down vote
Follow the comments of Lucia and note that
$$sum_nge 1fracn^2q^n(1-q^n)^2=qfrac,d,dqsum_nge 1fracnq^n1-q^n.$$
I believe the identity actually is the well known
$$qfrac,d,dqL=fracL^2-M12,$$
where
$$L=1-24sum_nge 1fracnq^n1-q^n;mbox
and;
M=1+240sum_nge 1fracn^3q^n1-q^n.$$
You can find it in here [https://en.wikipedia.org/wiki/Eisenstein_series].
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Follow the comments of Lucia and note that
$$sum_nge 1fracn^2q^n(1-q^n)^2=qfrac,d,dqsum_nge 1fracnq^n1-q^n.$$
I believe the identity actually is the well known
$$qfrac,d,dqL=fracL^2-M12,$$
where
$$L=1-24sum_nge 1fracnq^n1-q^n;mbox
and;
M=1+240sum_nge 1fracn^3q^n1-q^n.$$
You can find it in here [https://en.wikipedia.org/wiki/Eisenstein_series].
Follow the comments of Lucia and note that
$$sum_nge 1fracn^2q^n(1-q^n)^2=qfrac,d,dqsum_nge 1fracnq^n1-q^n.$$
I believe the identity actually is the well known
$$qfrac,d,dqL=fracL^2-M12,$$
where
$$L=1-24sum_nge 1fracnq^n1-q^n;mbox
and;
M=1+240sum_nge 1fracn^3q^n1-q^n.$$
You can find it in here [https://en.wikipedia.org/wiki/Eisenstein_series].
answered 21 mins ago
Zhou
39825
39825
add a comment |Â
add a comment |Â
up vote
1
down vote
$$ sum_k=1^infty frack^2 q^k(1-q^k)^2 = sum_n=1^infty sigma(n) n q^n$$
$$ sum_k=1^infty frack q^k1-q^k = sum_n=1^infty sigma(n) q^n$$
$$ left(sum_k=1^infty frack q^k1-q^kright)^2 = sum_n=1^infty sum_m=1^n-1 sigma(m) sigma(n-m) q^n $$
$$ sum_k=1^infty frack^3 q^k1-q^k = sum_n=1^infty sigma_3(n) q^n $$
so your identity is saying
$$ 6 n sigma(n) + 12 sum_m=1^n-1 sigma(m)sigma(n-m) = 5 sigma_3(n) + sigma(n)$$
Hmm, surely that's got to be known. Adding number-theory to the tags.
5
Such identities are obtained by multiplying Eisenstein series and decomposing the product in terms of modular forms. See Ramanujan's paper On certain arithmetical functions which includes this identity, Table IV line 1. ramanujan.sirinudi.org/Volumes/published/ram18.pdf
– Lucia
51 mins ago
add a comment |Â
up vote
1
down vote
$$ sum_k=1^infty frack^2 q^k(1-q^k)^2 = sum_n=1^infty sigma(n) n q^n$$
$$ sum_k=1^infty frack q^k1-q^k = sum_n=1^infty sigma(n) q^n$$
$$ left(sum_k=1^infty frack q^k1-q^kright)^2 = sum_n=1^infty sum_m=1^n-1 sigma(m) sigma(n-m) q^n $$
$$ sum_k=1^infty frack^3 q^k1-q^k = sum_n=1^infty sigma_3(n) q^n $$
so your identity is saying
$$ 6 n sigma(n) + 12 sum_m=1^n-1 sigma(m)sigma(n-m) = 5 sigma_3(n) + sigma(n)$$
Hmm, surely that's got to be known. Adding number-theory to the tags.
5
Such identities are obtained by multiplying Eisenstein series and decomposing the product in terms of modular forms. See Ramanujan's paper On certain arithmetical functions which includes this identity, Table IV line 1. ramanujan.sirinudi.org/Volumes/published/ram18.pdf
– Lucia
51 mins ago
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$ sum_k=1^infty frack^2 q^k(1-q^k)^2 = sum_n=1^infty sigma(n) n q^n$$
$$ sum_k=1^infty frack q^k1-q^k = sum_n=1^infty sigma(n) q^n$$
$$ left(sum_k=1^infty frack q^k1-q^kright)^2 = sum_n=1^infty sum_m=1^n-1 sigma(m) sigma(n-m) q^n $$
$$ sum_k=1^infty frack^3 q^k1-q^k = sum_n=1^infty sigma_3(n) q^n $$
so your identity is saying
$$ 6 n sigma(n) + 12 sum_m=1^n-1 sigma(m)sigma(n-m) = 5 sigma_3(n) + sigma(n)$$
Hmm, surely that's got to be known. Adding number-theory to the tags.
$$ sum_k=1^infty frack^2 q^k(1-q^k)^2 = sum_n=1^infty sigma(n) n q^n$$
$$ sum_k=1^infty frack q^k1-q^k = sum_n=1^infty sigma(n) q^n$$
$$ left(sum_k=1^infty frack q^k1-q^kright)^2 = sum_n=1^infty sum_m=1^n-1 sigma(m) sigma(n-m) q^n $$
$$ sum_k=1^infty frack^3 q^k1-q^k = sum_n=1^infty sigma_3(n) q^n $$
so your identity is saying
$$ 6 n sigma(n) + 12 sum_m=1^n-1 sigma(m)sigma(n-m) = 5 sigma_3(n) + sigma(n)$$
Hmm, surely that's got to be known. Adding number-theory to the tags.
answered 1 hour ago


Robert Israel
40.5k46114
40.5k46114
5
Such identities are obtained by multiplying Eisenstein series and decomposing the product in terms of modular forms. See Ramanujan's paper On certain arithmetical functions which includes this identity, Table IV line 1. ramanujan.sirinudi.org/Volumes/published/ram18.pdf
– Lucia
51 mins ago
add a comment |Â
5
Such identities are obtained by multiplying Eisenstein series and decomposing the product in terms of modular forms. See Ramanujan's paper On certain arithmetical functions which includes this identity, Table IV line 1. ramanujan.sirinudi.org/Volumes/published/ram18.pdf
– Lucia
51 mins ago
5
5
Such identities are obtained by multiplying Eisenstein series and decomposing the product in terms of modular forms. See Ramanujan's paper On certain arithmetical functions which includes this identity, Table IV line 1. ramanujan.sirinudi.org/Volumes/published/ram18.pdf
– Lucia
51 mins ago
Such identities are obtained by multiplying Eisenstein series and decomposing the product in terms of modular forms. See Ramanujan's paper On certain arithmetical functions which includes this identity, Table IV line 1. ramanujan.sirinudi.org/Volumes/published/ram18.pdf
– Lucia
51 mins ago
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f310735%2fsearching-for-a-proof-for-a-series-identity%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password