Find an envelope of the list of points
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
I have a list of points as you can see in the image below. From this list of points, I want to generate a filtered list of points, which is the envelope. Additionally, calculate the area under the envelope.
rawData = 1.`, 1.`, 0.6666666666666666`,
0.9316770186335404`, 0.5`, 0.906832298136646`, 0.5`,
0.8757763975155279`, 0.5`, 0.8633540372670807`, 0.5`,
0.8509316770186336`, 0.5`, 0.7888198757763976`, 0.5`,
0.7142857142857143`, 0.5`, 0.6645962732919255`, 0.5`,
0.577639751552795`, 0.3333333333333333`,
0.5341614906832298`, 0.3333333333333333`,
0.453416149068323`, 0.16666666666666666`,
0.36024844720496896`, 0.16666666666666666`,
0.2670807453416149`, 0.`, 0.21739130434782608`, 0.`,
0.18633540372670807`, 0.`, 0.13664596273291926`, 0.`,
0.09937888198757763`, 0.`, 0.062111801242236024`, 0.`,
0.055900621118012424`, 0.`, 0.`;
points=1.`,1.`,0.6666666666666666`,0.9316770186335404`,0.5`,0.906832298136646`,0.3333333333333333`,0.5341614906832298`,0.16666666666666666`,0.36024844720496896`,0.`,0.21739130434782608`;
Show[ListPlot[rawData, PlotStyle -> Red], ListLinePlot[points]]
f = Interpolation[points, InterpolationOrder -> 1];
NIntegrate[f[t], t, 0, 1, Method -> "GlobalAdaptive"]
list-manipulation numerical-integration
add a comment |Â
up vote
2
down vote
favorite
I have a list of points as you can see in the image below. From this list of points, I want to generate a filtered list of points, which is the envelope. Additionally, calculate the area under the envelope.
rawData = 1.`, 1.`, 0.6666666666666666`,
0.9316770186335404`, 0.5`, 0.906832298136646`, 0.5`,
0.8757763975155279`, 0.5`, 0.8633540372670807`, 0.5`,
0.8509316770186336`, 0.5`, 0.7888198757763976`, 0.5`,
0.7142857142857143`, 0.5`, 0.6645962732919255`, 0.5`,
0.577639751552795`, 0.3333333333333333`,
0.5341614906832298`, 0.3333333333333333`,
0.453416149068323`, 0.16666666666666666`,
0.36024844720496896`, 0.16666666666666666`,
0.2670807453416149`, 0.`, 0.21739130434782608`, 0.`,
0.18633540372670807`, 0.`, 0.13664596273291926`, 0.`,
0.09937888198757763`, 0.`, 0.062111801242236024`, 0.`,
0.055900621118012424`, 0.`, 0.`;
points=1.`,1.`,0.6666666666666666`,0.9316770186335404`,0.5`,0.906832298136646`,0.3333333333333333`,0.5341614906832298`,0.16666666666666666`,0.36024844720496896`,0.`,0.21739130434782608`;
Show[ListPlot[rawData, PlotStyle -> Red], ListLinePlot[points]]
f = Interpolation[points, InterpolationOrder -> 1];
NIntegrate[f[t], t, 0, 1, Method -> "GlobalAdaptive"]
list-manipulation numerical-integration
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I have a list of points as you can see in the image below. From this list of points, I want to generate a filtered list of points, which is the envelope. Additionally, calculate the area under the envelope.
rawData = 1.`, 1.`, 0.6666666666666666`,
0.9316770186335404`, 0.5`, 0.906832298136646`, 0.5`,
0.8757763975155279`, 0.5`, 0.8633540372670807`, 0.5`,
0.8509316770186336`, 0.5`, 0.7888198757763976`, 0.5`,
0.7142857142857143`, 0.5`, 0.6645962732919255`, 0.5`,
0.577639751552795`, 0.3333333333333333`,
0.5341614906832298`, 0.3333333333333333`,
0.453416149068323`, 0.16666666666666666`,
0.36024844720496896`, 0.16666666666666666`,
0.2670807453416149`, 0.`, 0.21739130434782608`, 0.`,
0.18633540372670807`, 0.`, 0.13664596273291926`, 0.`,
0.09937888198757763`, 0.`, 0.062111801242236024`, 0.`,
0.055900621118012424`, 0.`, 0.`;
points=1.`,1.`,0.6666666666666666`,0.9316770186335404`,0.5`,0.906832298136646`,0.3333333333333333`,0.5341614906832298`,0.16666666666666666`,0.36024844720496896`,0.`,0.21739130434782608`;
Show[ListPlot[rawData, PlotStyle -> Red], ListLinePlot[points]]
f = Interpolation[points, InterpolationOrder -> 1];
NIntegrate[f[t], t, 0, 1, Method -> "GlobalAdaptive"]
list-manipulation numerical-integration
I have a list of points as you can see in the image below. From this list of points, I want to generate a filtered list of points, which is the envelope. Additionally, calculate the area under the envelope.
rawData = 1.`, 1.`, 0.6666666666666666`,
0.9316770186335404`, 0.5`, 0.906832298136646`, 0.5`,
0.8757763975155279`, 0.5`, 0.8633540372670807`, 0.5`,
0.8509316770186336`, 0.5`, 0.7888198757763976`, 0.5`,
0.7142857142857143`, 0.5`, 0.6645962732919255`, 0.5`,
0.577639751552795`, 0.3333333333333333`,
0.5341614906832298`, 0.3333333333333333`,
0.453416149068323`, 0.16666666666666666`,
0.36024844720496896`, 0.16666666666666666`,
0.2670807453416149`, 0.`, 0.21739130434782608`, 0.`,
0.18633540372670807`, 0.`, 0.13664596273291926`, 0.`,
0.09937888198757763`, 0.`, 0.062111801242236024`, 0.`,
0.055900621118012424`, 0.`, 0.`;
points=1.`,1.`,0.6666666666666666`,0.9316770186335404`,0.5`,0.906832298136646`,0.3333333333333333`,0.5341614906832298`,0.16666666666666666`,0.36024844720496896`,0.`,0.21739130434782608`;
Show[ListPlot[rawData, PlotStyle -> Red], ListLinePlot[points]]
f = Interpolation[points, InterpolationOrder -> 1];
NIntegrate[f[t], t, 0, 1, Method -> "GlobalAdaptive"]
list-manipulation numerical-integration
list-manipulation numerical-integration
asked 1 hour ago
Kiril Danilchenko
625315
625315
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
l, u = Transpose[Through[First, Last@#] & /@ GatherBy[SortBy[rawData, Last], First]];
f1, f2 = Interpolation[#, InterpolationOrder -> 1]& /@ l, u
NIntegrate[f2[t] - f1[t], t, 0, 1, Method -> "GlobalAdaptive"]
0.101967
Alternatively,
RegionMeasure@BoundaryDiscretizeGraphics[Polygon[Join[Reverse@l, u]]]
0.101967
ListPlot[rawData, l, u, Joined -> False, True, True,
PlotStyle -> Blue, Red, Green, Filling -> 2 -> 3]
You should useInterpolationOrder -> 1
; otherwise the integral will be wrong.
â Henrik Schumacher
15 mins ago
Thank you @Henrik.
â kglr
15 mins ago
add a comment |Â
up vote
1
down vote
If you assume "envelope" means the "shrink wrap" of the points, the answer is:
ConvexHullMesh[rawData]
If you want to get the area under the curve, add a point at 1,0.
myRegion = ConvexHullMesh[rawData];
Get the area:
RegionMeasure[myRegion]
(* 0.757764 *)
Get the coordinates:
MeshCoordinates[myRegion]
(*
1., 1., 0.5, 0.906832, 0., 0.217391, 0., 0.186335,
0., 0.136646, 0., 0.0993789, 0., 0.0621118, 0., 0.0559006,
0., 0., 1., 0.
*)
Show[HighlightMesh[myRegion, Style[2, Opacity[0.5]]],
Graphics[PointSize[0.02], Red, Point[MeshCoordinates[myRegion]]]]
thank you for the answer. How I get the boundary points from the ConvexHull
â Kiril Danilchenko
1 hour ago
The problem with this is that by design, it will miss dips or troughs in the data.
â J. M. is computer-lessâ¦
1 hour ago
It all comes down to what the poser means by "envelope." I assumed the Convex Hull.
â David G. Stork
1 hour ago
1
A bit hard to explain since I am on mobile, but I will try. Look at kglr's answer. In particular, notice the green line in his answer. A convex hull approach will not be able to reproduce that.
â J. M. is computer-lessâ¦
59 mins ago
add a comment |Â
up vote
1
down vote
Here another way, using the three-argument version of GroupBy
:
a = KeySort[GroupBy[rawData, First -> Last, MinMax]];
lower = Values[a][[All, 1]];
upper = Values[a][[All, 2]];
t = Keys[a];
Show[
ListLinePlot[Transpose[t, upper], Transpose[t, lower]],
ListPlot[rawData, PlotStyle -> Red]
]
And since these functions are piecewise-linear, we can apply Tai's method directly to obtain the integral exactly:
ÃÂ = 0.5 (Join[#, 0.] + Join[0., #]) &@Differences[t];
(upper - lower).ÃÂ
0.101967
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
l, u = Transpose[Through[First, Last@#] & /@ GatherBy[SortBy[rawData, Last], First]];
f1, f2 = Interpolation[#, InterpolationOrder -> 1]& /@ l, u
NIntegrate[f2[t] - f1[t], t, 0, 1, Method -> "GlobalAdaptive"]
0.101967
Alternatively,
RegionMeasure@BoundaryDiscretizeGraphics[Polygon[Join[Reverse@l, u]]]
0.101967
ListPlot[rawData, l, u, Joined -> False, True, True,
PlotStyle -> Blue, Red, Green, Filling -> 2 -> 3]
You should useInterpolationOrder -> 1
; otherwise the integral will be wrong.
â Henrik Schumacher
15 mins ago
Thank you @Henrik.
â kglr
15 mins ago
add a comment |Â
up vote
2
down vote
l, u = Transpose[Through[First, Last@#] & /@ GatherBy[SortBy[rawData, Last], First]];
f1, f2 = Interpolation[#, InterpolationOrder -> 1]& /@ l, u
NIntegrate[f2[t] - f1[t], t, 0, 1, Method -> "GlobalAdaptive"]
0.101967
Alternatively,
RegionMeasure@BoundaryDiscretizeGraphics[Polygon[Join[Reverse@l, u]]]
0.101967
ListPlot[rawData, l, u, Joined -> False, True, True,
PlotStyle -> Blue, Red, Green, Filling -> 2 -> 3]
You should useInterpolationOrder -> 1
; otherwise the integral will be wrong.
â Henrik Schumacher
15 mins ago
Thank you @Henrik.
â kglr
15 mins ago
add a comment |Â
up vote
2
down vote
up vote
2
down vote
l, u = Transpose[Through[First, Last@#] & /@ GatherBy[SortBy[rawData, Last], First]];
f1, f2 = Interpolation[#, InterpolationOrder -> 1]& /@ l, u
NIntegrate[f2[t] - f1[t], t, 0, 1, Method -> "GlobalAdaptive"]
0.101967
Alternatively,
RegionMeasure@BoundaryDiscretizeGraphics[Polygon[Join[Reverse@l, u]]]
0.101967
ListPlot[rawData, l, u, Joined -> False, True, True,
PlotStyle -> Blue, Red, Green, Filling -> 2 -> 3]
l, u = Transpose[Through[First, Last@#] & /@ GatherBy[SortBy[rawData, Last], First]];
f1, f2 = Interpolation[#, InterpolationOrder -> 1]& /@ l, u
NIntegrate[f2[t] - f1[t], t, 0, 1, Method -> "GlobalAdaptive"]
0.101967
Alternatively,
RegionMeasure@BoundaryDiscretizeGraphics[Polygon[Join[Reverse@l, u]]]
0.101967
ListPlot[rawData, l, u, Joined -> False, True, True,
PlotStyle -> Blue, Red, Green, Filling -> 2 -> 3]
edited 51 secs ago
answered 1 hour ago
kglr
165k8188388
165k8188388
You should useInterpolationOrder -> 1
; otherwise the integral will be wrong.
â Henrik Schumacher
15 mins ago
Thank you @Henrik.
â kglr
15 mins ago
add a comment |Â
You should useInterpolationOrder -> 1
; otherwise the integral will be wrong.
â Henrik Schumacher
15 mins ago
Thank you @Henrik.
â kglr
15 mins ago
You should use
InterpolationOrder -> 1
; otherwise the integral will be wrong.â Henrik Schumacher
15 mins ago
You should use
InterpolationOrder -> 1
; otherwise the integral will be wrong.â Henrik Schumacher
15 mins ago
Thank you @Henrik.
â kglr
15 mins ago
Thank you @Henrik.
â kglr
15 mins ago
add a comment |Â
up vote
1
down vote
If you assume "envelope" means the "shrink wrap" of the points, the answer is:
ConvexHullMesh[rawData]
If you want to get the area under the curve, add a point at 1,0.
myRegion = ConvexHullMesh[rawData];
Get the area:
RegionMeasure[myRegion]
(* 0.757764 *)
Get the coordinates:
MeshCoordinates[myRegion]
(*
1., 1., 0.5, 0.906832, 0., 0.217391, 0., 0.186335,
0., 0.136646, 0., 0.0993789, 0., 0.0621118, 0., 0.0559006,
0., 0., 1., 0.
*)
Show[HighlightMesh[myRegion, Style[2, Opacity[0.5]]],
Graphics[PointSize[0.02], Red, Point[MeshCoordinates[myRegion]]]]
thank you for the answer. How I get the boundary points from the ConvexHull
â Kiril Danilchenko
1 hour ago
The problem with this is that by design, it will miss dips or troughs in the data.
â J. M. is computer-lessâ¦
1 hour ago
It all comes down to what the poser means by "envelope." I assumed the Convex Hull.
â David G. Stork
1 hour ago
1
A bit hard to explain since I am on mobile, but I will try. Look at kglr's answer. In particular, notice the green line in his answer. A convex hull approach will not be able to reproduce that.
â J. M. is computer-lessâ¦
59 mins ago
add a comment |Â
up vote
1
down vote
If you assume "envelope" means the "shrink wrap" of the points, the answer is:
ConvexHullMesh[rawData]
If you want to get the area under the curve, add a point at 1,0.
myRegion = ConvexHullMesh[rawData];
Get the area:
RegionMeasure[myRegion]
(* 0.757764 *)
Get the coordinates:
MeshCoordinates[myRegion]
(*
1., 1., 0.5, 0.906832, 0., 0.217391, 0., 0.186335,
0., 0.136646, 0., 0.0993789, 0., 0.0621118, 0., 0.0559006,
0., 0., 1., 0.
*)
Show[HighlightMesh[myRegion, Style[2, Opacity[0.5]]],
Graphics[PointSize[0.02], Red, Point[MeshCoordinates[myRegion]]]]
thank you for the answer. How I get the boundary points from the ConvexHull
â Kiril Danilchenko
1 hour ago
The problem with this is that by design, it will miss dips or troughs in the data.
â J. M. is computer-lessâ¦
1 hour ago
It all comes down to what the poser means by "envelope." I assumed the Convex Hull.
â David G. Stork
1 hour ago
1
A bit hard to explain since I am on mobile, but I will try. Look at kglr's answer. In particular, notice the green line in his answer. A convex hull approach will not be able to reproduce that.
â J. M. is computer-lessâ¦
59 mins ago
add a comment |Â
up vote
1
down vote
up vote
1
down vote
If you assume "envelope" means the "shrink wrap" of the points, the answer is:
ConvexHullMesh[rawData]
If you want to get the area under the curve, add a point at 1,0.
myRegion = ConvexHullMesh[rawData];
Get the area:
RegionMeasure[myRegion]
(* 0.757764 *)
Get the coordinates:
MeshCoordinates[myRegion]
(*
1., 1., 0.5, 0.906832, 0., 0.217391, 0., 0.186335,
0., 0.136646, 0., 0.0993789, 0., 0.0621118, 0., 0.0559006,
0., 0., 1., 0.
*)
Show[HighlightMesh[myRegion, Style[2, Opacity[0.5]]],
Graphics[PointSize[0.02], Red, Point[MeshCoordinates[myRegion]]]]
If you assume "envelope" means the "shrink wrap" of the points, the answer is:
ConvexHullMesh[rawData]
If you want to get the area under the curve, add a point at 1,0.
myRegion = ConvexHullMesh[rawData];
Get the area:
RegionMeasure[myRegion]
(* 0.757764 *)
Get the coordinates:
MeshCoordinates[myRegion]
(*
1., 1., 0.5, 0.906832, 0., 0.217391, 0., 0.186335,
0., 0.136646, 0., 0.0993789, 0., 0.0621118, 0., 0.0559006,
0., 0., 1., 0.
*)
Show[HighlightMesh[myRegion, Style[2, Opacity[0.5]]],
Graphics[PointSize[0.02], Red, Point[MeshCoordinates[myRegion]]]]
edited 57 mins ago
answered 1 hour ago
David G. Stork
21.8k11747
21.8k11747
thank you for the answer. How I get the boundary points from the ConvexHull
â Kiril Danilchenko
1 hour ago
The problem with this is that by design, it will miss dips or troughs in the data.
â J. M. is computer-lessâ¦
1 hour ago
It all comes down to what the poser means by "envelope." I assumed the Convex Hull.
â David G. Stork
1 hour ago
1
A bit hard to explain since I am on mobile, but I will try. Look at kglr's answer. In particular, notice the green line in his answer. A convex hull approach will not be able to reproduce that.
â J. M. is computer-lessâ¦
59 mins ago
add a comment |Â
thank you for the answer. How I get the boundary points from the ConvexHull
â Kiril Danilchenko
1 hour ago
The problem with this is that by design, it will miss dips or troughs in the data.
â J. M. is computer-lessâ¦
1 hour ago
It all comes down to what the poser means by "envelope." I assumed the Convex Hull.
â David G. Stork
1 hour ago
1
A bit hard to explain since I am on mobile, but I will try. Look at kglr's answer. In particular, notice the green line in his answer. A convex hull approach will not be able to reproduce that.
â J. M. is computer-lessâ¦
59 mins ago
thank you for the answer. How I get the boundary points from the ConvexHull
â Kiril Danilchenko
1 hour ago
thank you for the answer. How I get the boundary points from the ConvexHull
â Kiril Danilchenko
1 hour ago
The problem with this is that by design, it will miss dips or troughs in the data.
â J. M. is computer-lessâ¦
1 hour ago
The problem with this is that by design, it will miss dips or troughs in the data.
â J. M. is computer-lessâ¦
1 hour ago
It all comes down to what the poser means by "envelope." I assumed the Convex Hull.
â David G. Stork
1 hour ago
It all comes down to what the poser means by "envelope." I assumed the Convex Hull.
â David G. Stork
1 hour ago
1
1
A bit hard to explain since I am on mobile, but I will try. Look at kglr's answer. In particular, notice the green line in his answer. A convex hull approach will not be able to reproduce that.
â J. M. is computer-lessâ¦
59 mins ago
A bit hard to explain since I am on mobile, but I will try. Look at kglr's answer. In particular, notice the green line in his answer. A convex hull approach will not be able to reproduce that.
â J. M. is computer-lessâ¦
59 mins ago
add a comment |Â
up vote
1
down vote
Here another way, using the three-argument version of GroupBy
:
a = KeySort[GroupBy[rawData, First -> Last, MinMax]];
lower = Values[a][[All, 1]];
upper = Values[a][[All, 2]];
t = Keys[a];
Show[
ListLinePlot[Transpose[t, upper], Transpose[t, lower]],
ListPlot[rawData, PlotStyle -> Red]
]
And since these functions are piecewise-linear, we can apply Tai's method directly to obtain the integral exactly:
ÃÂ = 0.5 (Join[#, 0.] + Join[0., #]) &@Differences[t];
(upper - lower).ÃÂ
0.101967
add a comment |Â
up vote
1
down vote
Here another way, using the three-argument version of GroupBy
:
a = KeySort[GroupBy[rawData, First -> Last, MinMax]];
lower = Values[a][[All, 1]];
upper = Values[a][[All, 2]];
t = Keys[a];
Show[
ListLinePlot[Transpose[t, upper], Transpose[t, lower]],
ListPlot[rawData, PlotStyle -> Red]
]
And since these functions are piecewise-linear, we can apply Tai's method directly to obtain the integral exactly:
ÃÂ = 0.5 (Join[#, 0.] + Join[0., #]) &@Differences[t];
(upper - lower).ÃÂ
0.101967
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Here another way, using the three-argument version of GroupBy
:
a = KeySort[GroupBy[rawData, First -> Last, MinMax]];
lower = Values[a][[All, 1]];
upper = Values[a][[All, 2]];
t = Keys[a];
Show[
ListLinePlot[Transpose[t, upper], Transpose[t, lower]],
ListPlot[rawData, PlotStyle -> Red]
]
And since these functions are piecewise-linear, we can apply Tai's method directly to obtain the integral exactly:
ÃÂ = 0.5 (Join[#, 0.] + Join[0., #]) &@Differences[t];
(upper - lower).ÃÂ
0.101967
Here another way, using the three-argument version of GroupBy
:
a = KeySort[GroupBy[rawData, First -> Last, MinMax]];
lower = Values[a][[All, 1]];
upper = Values[a][[All, 2]];
t = Keys[a];
Show[
ListLinePlot[Transpose[t, upper], Transpose[t, lower]],
ListPlot[rawData, PlotStyle -> Red]
]
And since these functions are piecewise-linear, we can apply Tai's method directly to obtain the integral exactly:
ÃÂ = 0.5 (Join[#, 0.] + Join[0., #]) &@Differences[t];
(upper - lower).ÃÂ
0.101967
answered 16 mins ago
Henrik Schumacher
41.9k260125
41.9k260125
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f183933%2ffind-an-envelope-of-the-list-of-points%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password