How to extend the 'summary' function to include sd, kurtosis and skew?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
6
down vote

favorite












R's summary function works really well on a dataframe, giving, for example:



> summary(fred)
sum.count count sum value
Min. : 1.000 Min. : 1.0 Min. : 1 Min. : 0.00
1st Qu.: 1.000 1st Qu.: 6.0 1st Qu.: 7 1st Qu.:35.82
Median : 1.067 Median : 9.0 Median : 10 Median :42.17
Mean : 1.238 Mean : 497.1 Mean : 6120 Mean :43.44
3rd Qu.: 1.200 3rd Qu.: 35.0 3rd Qu.: 40 3rd Qu.:51.31
Max. :40.687 Max. :64425.0 Max. :2621278 Max. :75.95


What I'd like to do is modify the function so it also gives, after 'Mean', an entry for the standard deviation, the kurtosis and the skew.



What's the best way to do this? I've researched this a bit, and adding a function with a method doesn't work for me:



> summary.class <- function(x)

return(sd(x))



The above is just ignored. I suppose that I need to understand how to define all classes to return.










share|improve this question























  • summary.data.frame <- function(...) tt <- base::summary.data.frame(...); <code to modify tt>; return(tt)
    – Ben Bolker
    4 hours ago










  • Possible duplicate of R extended summary numerical values including kurtosis, skew, etc?
    – Tung
    2 hours ago














up vote
6
down vote

favorite












R's summary function works really well on a dataframe, giving, for example:



> summary(fred)
sum.count count sum value
Min. : 1.000 Min. : 1.0 Min. : 1 Min. : 0.00
1st Qu.: 1.000 1st Qu.: 6.0 1st Qu.: 7 1st Qu.:35.82
Median : 1.067 Median : 9.0 Median : 10 Median :42.17
Mean : 1.238 Mean : 497.1 Mean : 6120 Mean :43.44
3rd Qu.: 1.200 3rd Qu.: 35.0 3rd Qu.: 40 3rd Qu.:51.31
Max. :40.687 Max. :64425.0 Max. :2621278 Max. :75.95


What I'd like to do is modify the function so it also gives, after 'Mean', an entry for the standard deviation, the kurtosis and the skew.



What's the best way to do this? I've researched this a bit, and adding a function with a method doesn't work for me:



> summary.class <- function(x)

return(sd(x))



The above is just ignored. I suppose that I need to understand how to define all classes to return.










share|improve this question























  • summary.data.frame <- function(...) tt <- base::summary.data.frame(...); <code to modify tt>; return(tt)
    – Ben Bolker
    4 hours ago










  • Possible duplicate of R extended summary numerical values including kurtosis, skew, etc?
    – Tung
    2 hours ago












up vote
6
down vote

favorite









up vote
6
down vote

favorite











R's summary function works really well on a dataframe, giving, for example:



> summary(fred)
sum.count count sum value
Min. : 1.000 Min. : 1.0 Min. : 1 Min. : 0.00
1st Qu.: 1.000 1st Qu.: 6.0 1st Qu.: 7 1st Qu.:35.82
Median : 1.067 Median : 9.0 Median : 10 Median :42.17
Mean : 1.238 Mean : 497.1 Mean : 6120 Mean :43.44
3rd Qu.: 1.200 3rd Qu.: 35.0 3rd Qu.: 40 3rd Qu.:51.31
Max. :40.687 Max. :64425.0 Max. :2621278 Max. :75.95


What I'd like to do is modify the function so it also gives, after 'Mean', an entry for the standard deviation, the kurtosis and the skew.



What's the best way to do this? I've researched this a bit, and adding a function with a method doesn't work for me:



> summary.class <- function(x)

return(sd(x))



The above is just ignored. I suppose that I need to understand how to define all classes to return.










share|improve this question















R's summary function works really well on a dataframe, giving, for example:



> summary(fred)
sum.count count sum value
Min. : 1.000 Min. : 1.0 Min. : 1 Min. : 0.00
1st Qu.: 1.000 1st Qu.: 6.0 1st Qu.: 7 1st Qu.:35.82
Median : 1.067 Median : 9.0 Median : 10 Median :42.17
Mean : 1.238 Mean : 497.1 Mean : 6120 Mean :43.44
3rd Qu.: 1.200 3rd Qu.: 35.0 3rd Qu.: 40 3rd Qu.:51.31
Max. :40.687 Max. :64425.0 Max. :2621278 Max. :75.95


What I'd like to do is modify the function so it also gives, after 'Mean', an entry for the standard deviation, the kurtosis and the skew.



What's the best way to do this? I've researched this a bit, and adding a function with a method doesn't work for me:



> summary.class <- function(x)

return(sd(x))



The above is just ignored. I suppose that I need to understand how to define all classes to return.







r std summary skew kurtosis






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 hours ago









Tung

5,79321634




5,79321634










asked 5 hours ago









Peter Brooks

1358




1358











  • summary.data.frame <- function(...) tt <- base::summary.data.frame(...); <code to modify tt>; return(tt)
    – Ben Bolker
    4 hours ago










  • Possible duplicate of R extended summary numerical values including kurtosis, skew, etc?
    – Tung
    2 hours ago
















  • summary.data.frame <- function(...) tt <- base::summary.data.frame(...); <code to modify tt>; return(tt)
    – Ben Bolker
    4 hours ago










  • Possible duplicate of R extended summary numerical values including kurtosis, skew, etc?
    – Tung
    2 hours ago















summary.data.frame <- function(...) tt <- base::summary.data.frame(...); <code to modify tt>; return(tt)
– Ben Bolker
4 hours ago




summary.data.frame <- function(...) tt <- base::summary.data.frame(...); <code to modify tt>; return(tt)
– Ben Bolker
4 hours ago












Possible duplicate of R extended summary numerical values including kurtosis, skew, etc?
– Tung
2 hours ago




Possible duplicate of R extended summary numerical values including kurtosis, skew, etc?
– Tung
2 hours ago












2 Answers
2






active

oldest

votes

















up vote
7
down vote



accepted










How about using already existing solutions from the psych package?



my.dat <- cbind(norm = rnorm(100), pois = rpois(n = 100, 10))

library(psych)
describe(my.dat)
# vars n mean sd median trimmed mad min max range skew kurtosis se
# norm 1 100 -0.02 0.98 -0.09 -0.06 0.86 -3.25 2.81 6.06 0.13 0.74 0.10
# pois 2 100 9.91 3.30 10.00 9.95 4.45 3.00 17.00 14.00 -0.07 -0.75 0.33





share|improve this answer



























    up vote
    1
    down vote













    Another choice is the Desc function from the DescTools package which produce both summary stats and plot





    library(DescTools)
    Desc(iris3, plotit = TRUE)

    #> -------------------------------------------------------------------------
    #> iris3 (numeric)
    #>
    #> length n NAs unique 0s mean meanCI
    #> 600 600 0 74 0 3.46 3.31
    #> 100.0% 0.0% 0.0% 3.62
    #>
    #> .05 .10 .25 median .75 .90 .95
    #> 0.20 1.10 1.70 3.20 5.10 6.20 6.70
    #>
    #> range sd vcoef mad IQR skew kurt
    #> 7.80 1.98 0.57 2.52 3.40 0.13 -1.05
    #>
    #> lowest : 0.1 (5), 0.2 (29), 0.3 (7), 0.4 (7), 0.5
    #> highest: 7.3, 7.4, 7.6, 7.7 (4), 7.9




    The skim function from the skimr package is also a good one



    library(skimr)
    skim(iris)

    Skim summary statistics
    n obs: 150
    n variables: 5

    -- Variable type:factor --------------------------------------------------------
    variable missing complete n n_unique
    Species 0 150 150 3
    top_counts ordered
    set: 50, ver: 50, vir: 50, NA: 0 FALSE

    -- Variable type:numeric -------------------------------------------------------
    variable missing complete n mean sd p0 p25 p50
    Petal.Length 0 150 150 3.76 1.77 1 1.6 4.35
    Petal.Width 0 150 150 1.2 0.76 0.1 0.3 1.3
    Sepal.Length 0 150 150 5.84 0.83 4.3 5.1 5.8
    Sepal.Width 0 150 150 3.06 0.44 2 2.8 3
    p75 p100 hist
    5.1 6.9 ▇▁▁▂▅▅▃▁
    1.8 2.5 ▇▁▁▅▃▃▂▂
    6.4 7.9 ▂▇▅▇▆▅▂▂
    3.3 4.4 ▁▂▅▇▃▂▁▁





    share|improve this answer






















      Your Answer





      StackExchange.ifUsing("editor", function ()
      StackExchange.using("externalEditor", function ()
      StackExchange.using("snippets", function ()
      StackExchange.snippets.init();
      );
      );
      , "code-snippets");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "1"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f52344047%2fhow-to-extend-the-summary-function-to-include-sd-kurtosis-and-skew%23new-answer', 'question_page');

      );

      Post as a guest






























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      7
      down vote



      accepted










      How about using already existing solutions from the psych package?



      my.dat <- cbind(norm = rnorm(100), pois = rpois(n = 100, 10))

      library(psych)
      describe(my.dat)
      # vars n mean sd median trimmed mad min max range skew kurtosis se
      # norm 1 100 -0.02 0.98 -0.09 -0.06 0.86 -3.25 2.81 6.06 0.13 0.74 0.10
      # pois 2 100 9.91 3.30 10.00 9.95 4.45 3.00 17.00 14.00 -0.07 -0.75 0.33





      share|improve this answer
























        up vote
        7
        down vote



        accepted










        How about using already existing solutions from the psych package?



        my.dat <- cbind(norm = rnorm(100), pois = rpois(n = 100, 10))

        library(psych)
        describe(my.dat)
        # vars n mean sd median trimmed mad min max range skew kurtosis se
        # norm 1 100 -0.02 0.98 -0.09 -0.06 0.86 -3.25 2.81 6.06 0.13 0.74 0.10
        # pois 2 100 9.91 3.30 10.00 9.95 4.45 3.00 17.00 14.00 -0.07 -0.75 0.33





        share|improve this answer






















          up vote
          7
          down vote



          accepted







          up vote
          7
          down vote



          accepted






          How about using already existing solutions from the psych package?



          my.dat <- cbind(norm = rnorm(100), pois = rpois(n = 100, 10))

          library(psych)
          describe(my.dat)
          # vars n mean sd median trimmed mad min max range skew kurtosis se
          # norm 1 100 -0.02 0.98 -0.09 -0.06 0.86 -3.25 2.81 6.06 0.13 0.74 0.10
          # pois 2 100 9.91 3.30 10.00 9.95 4.45 3.00 17.00 14.00 -0.07 -0.75 0.33





          share|improve this answer












          How about using already existing solutions from the psych package?



          my.dat <- cbind(norm = rnorm(100), pois = rpois(n = 100, 10))

          library(psych)
          describe(my.dat)
          # vars n mean sd median trimmed mad min max range skew kurtosis se
          # norm 1 100 -0.02 0.98 -0.09 -0.06 0.86 -3.25 2.81 6.06 0.13 0.74 0.10
          # pois 2 100 9.91 3.30 10.00 9.95 4.45 3.00 17.00 14.00 -0.07 -0.75 0.33






          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 5 hours ago









          storaged

          1,4001222




          1,4001222






















              up vote
              1
              down vote













              Another choice is the Desc function from the DescTools package which produce both summary stats and plot





              library(DescTools)
              Desc(iris3, plotit = TRUE)

              #> -------------------------------------------------------------------------
              #> iris3 (numeric)
              #>
              #> length n NAs unique 0s mean meanCI
              #> 600 600 0 74 0 3.46 3.31
              #> 100.0% 0.0% 0.0% 3.62
              #>
              #> .05 .10 .25 median .75 .90 .95
              #> 0.20 1.10 1.70 3.20 5.10 6.20 6.70
              #>
              #> range sd vcoef mad IQR skew kurt
              #> 7.80 1.98 0.57 2.52 3.40 0.13 -1.05
              #>
              #> lowest : 0.1 (5), 0.2 (29), 0.3 (7), 0.4 (7), 0.5
              #> highest: 7.3, 7.4, 7.6, 7.7 (4), 7.9




              The skim function from the skimr package is also a good one



              library(skimr)
              skim(iris)

              Skim summary statistics
              n obs: 150
              n variables: 5

              -- Variable type:factor --------------------------------------------------------
              variable missing complete n n_unique
              Species 0 150 150 3
              top_counts ordered
              set: 50, ver: 50, vir: 50, NA: 0 FALSE

              -- Variable type:numeric -------------------------------------------------------
              variable missing complete n mean sd p0 p25 p50
              Petal.Length 0 150 150 3.76 1.77 1 1.6 4.35
              Petal.Width 0 150 150 1.2 0.76 0.1 0.3 1.3
              Sepal.Length 0 150 150 5.84 0.83 4.3 5.1 5.8
              Sepal.Width 0 150 150 3.06 0.44 2 2.8 3
              p75 p100 hist
              5.1 6.9 ▇▁▁▂▅▅▃▁
              1.8 2.5 ▇▁▁▅▃▃▂▂
              6.4 7.9 ▂▇▅▇▆▅▂▂
              3.3 4.4 ▁▂▅▇▃▂▁▁





              share|improve this answer


























                up vote
                1
                down vote













                Another choice is the Desc function from the DescTools package which produce both summary stats and plot





                library(DescTools)
                Desc(iris3, plotit = TRUE)

                #> -------------------------------------------------------------------------
                #> iris3 (numeric)
                #>
                #> length n NAs unique 0s mean meanCI
                #> 600 600 0 74 0 3.46 3.31
                #> 100.0% 0.0% 0.0% 3.62
                #>
                #> .05 .10 .25 median .75 .90 .95
                #> 0.20 1.10 1.70 3.20 5.10 6.20 6.70
                #>
                #> range sd vcoef mad IQR skew kurt
                #> 7.80 1.98 0.57 2.52 3.40 0.13 -1.05
                #>
                #> lowest : 0.1 (5), 0.2 (29), 0.3 (7), 0.4 (7), 0.5
                #> highest: 7.3, 7.4, 7.6, 7.7 (4), 7.9




                The skim function from the skimr package is also a good one



                library(skimr)
                skim(iris)

                Skim summary statistics
                n obs: 150
                n variables: 5

                -- Variable type:factor --------------------------------------------------------
                variable missing complete n n_unique
                Species 0 150 150 3
                top_counts ordered
                set: 50, ver: 50, vir: 50, NA: 0 FALSE

                -- Variable type:numeric -------------------------------------------------------
                variable missing complete n mean sd p0 p25 p50
                Petal.Length 0 150 150 3.76 1.77 1 1.6 4.35
                Petal.Width 0 150 150 1.2 0.76 0.1 0.3 1.3
                Sepal.Length 0 150 150 5.84 0.83 4.3 5.1 5.8
                Sepal.Width 0 150 150 3.06 0.44 2 2.8 3
                p75 p100 hist
                5.1 6.9 ▇▁▁▂▅▅▃▁
                1.8 2.5 ▇▁▁▅▃▃▂▂
                6.4 7.9 ▂▇▅▇▆▅▂▂
                3.3 4.4 ▁▂▅▇▃▂▁▁





                share|improve this answer
























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  Another choice is the Desc function from the DescTools package which produce both summary stats and plot





                  library(DescTools)
                  Desc(iris3, plotit = TRUE)

                  #> -------------------------------------------------------------------------
                  #> iris3 (numeric)
                  #>
                  #> length n NAs unique 0s mean meanCI
                  #> 600 600 0 74 0 3.46 3.31
                  #> 100.0% 0.0% 0.0% 3.62
                  #>
                  #> .05 .10 .25 median .75 .90 .95
                  #> 0.20 1.10 1.70 3.20 5.10 6.20 6.70
                  #>
                  #> range sd vcoef mad IQR skew kurt
                  #> 7.80 1.98 0.57 2.52 3.40 0.13 -1.05
                  #>
                  #> lowest : 0.1 (5), 0.2 (29), 0.3 (7), 0.4 (7), 0.5
                  #> highest: 7.3, 7.4, 7.6, 7.7 (4), 7.9




                  The skim function from the skimr package is also a good one



                  library(skimr)
                  skim(iris)

                  Skim summary statistics
                  n obs: 150
                  n variables: 5

                  -- Variable type:factor --------------------------------------------------------
                  variable missing complete n n_unique
                  Species 0 150 150 3
                  top_counts ordered
                  set: 50, ver: 50, vir: 50, NA: 0 FALSE

                  -- Variable type:numeric -------------------------------------------------------
                  variable missing complete n mean sd p0 p25 p50
                  Petal.Length 0 150 150 3.76 1.77 1 1.6 4.35
                  Petal.Width 0 150 150 1.2 0.76 0.1 0.3 1.3
                  Sepal.Length 0 150 150 5.84 0.83 4.3 5.1 5.8
                  Sepal.Width 0 150 150 3.06 0.44 2 2.8 3
                  p75 p100 hist
                  5.1 6.9 ▇▁▁▂▅▅▃▁
                  1.8 2.5 ▇▁▁▅▃▃▂▂
                  6.4 7.9 ▂▇▅▇▆▅▂▂
                  3.3 4.4 ▁▂▅▇▃▂▁▁





                  share|improve this answer














                  Another choice is the Desc function from the DescTools package which produce both summary stats and plot





                  library(DescTools)
                  Desc(iris3, plotit = TRUE)

                  #> -------------------------------------------------------------------------
                  #> iris3 (numeric)
                  #>
                  #> length n NAs unique 0s mean meanCI
                  #> 600 600 0 74 0 3.46 3.31
                  #> 100.0% 0.0% 0.0% 3.62
                  #>
                  #> .05 .10 .25 median .75 .90 .95
                  #> 0.20 1.10 1.70 3.20 5.10 6.20 6.70
                  #>
                  #> range sd vcoef mad IQR skew kurt
                  #> 7.80 1.98 0.57 2.52 3.40 0.13 -1.05
                  #>
                  #> lowest : 0.1 (5), 0.2 (29), 0.3 (7), 0.4 (7), 0.5
                  #> highest: 7.3, 7.4, 7.6, 7.7 (4), 7.9




                  The skim function from the skimr package is also a good one



                  library(skimr)
                  skim(iris)

                  Skim summary statistics
                  n obs: 150
                  n variables: 5

                  -- Variable type:factor --------------------------------------------------------
                  variable missing complete n n_unique
                  Species 0 150 150 3
                  top_counts ordered
                  set: 50, ver: 50, vir: 50, NA: 0 FALSE

                  -- Variable type:numeric -------------------------------------------------------
                  variable missing complete n mean sd p0 p25 p50
                  Petal.Length 0 150 150 3.76 1.77 1 1.6 4.35
                  Petal.Width 0 150 150 1.2 0.76 0.1 0.3 1.3
                  Sepal.Length 0 150 150 5.84 0.83 4.3 5.1 5.8
                  Sepal.Width 0 150 150 3.06 0.44 2 2.8 3
                  p75 p100 hist
                  5.1 6.9 ▇▁▁▂▅▅▃▁
                  1.8 2.5 ▇▁▁▅▃▃▂▂
                  6.4 7.9 ▂▇▅▇▆▅▂▂
                  3.3 4.4 ▁▂▅▇▃▂▁▁






                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 1 hour ago

























                  answered 1 hour ago









                  Tung

                  5,79321634




                  5,79321634



























                       

                      draft saved


                      draft discarded















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f52344047%2fhow-to-extend-the-summary-function-to-include-sd-kurtosis-and-skew%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What does second last employer means? [closed]

                      Installing NextGIS Connect into QGIS 3?

                      Confectionery