Wolfram says sum diverges, but Mathematica gives a numerical value for infinite sum
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Take this sum for example:
$$sum_n=2^inftyfrac1log(n!)$$
Wolfram says that this does not converge by the comparison test. However, when I use Mathematica's NSum
function, it returns a numerical value for the summation. Who should I trust?
NSum[1/Log[n!], n, 2, [Infinity]]=6.12902
summation wolfram-alpha-queries
 |Â
show 1 more comment
up vote
1
down vote
favorite
Take this sum for example:
$$sum_n=2^inftyfrac1log(n!)$$
Wolfram says that this does not converge by the comparison test. However, when I use Mathematica's NSum
function, it returns a numerical value for the summation. Who should I trust?
NSum[1/Log[n!], n, 2, [Infinity]]=6.12902
summation wolfram-alpha-queries
1
Stirling: $log n!sim nlog n$, and $frac1nlog n$ is not summable.
– AccidentalFourierTransform
3 hours ago
@AccidentalFourierTransform by not summable, do you mean divergent?
– John Glenn
3 hours ago
yes indeed.$$
– AccidentalFourierTransform
3 hours ago
So what exactly happens when Mathematica gives me a numerical answer?
– John Glenn
3 hours ago
AboutRegularization
?
– Î‘λÎÂξανδÃÂο Ζεγγ
3 hours ago
 |Â
show 1 more comment
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Take this sum for example:
$$sum_n=2^inftyfrac1log(n!)$$
Wolfram says that this does not converge by the comparison test. However, when I use Mathematica's NSum
function, it returns a numerical value for the summation. Who should I trust?
NSum[1/Log[n!], n, 2, [Infinity]]=6.12902
summation wolfram-alpha-queries
Take this sum for example:
$$sum_n=2^inftyfrac1log(n!)$$
Wolfram says that this does not converge by the comparison test. However, when I use Mathematica's NSum
function, it returns a numerical value for the summation. Who should I trust?
NSum[1/Log[n!], n, 2, [Infinity]]=6.12902
summation wolfram-alpha-queries
summation wolfram-alpha-queries
asked 3 hours ago
John Glenn
1285
1285
1
Stirling: $log n!sim nlog n$, and $frac1nlog n$ is not summable.
– AccidentalFourierTransform
3 hours ago
@AccidentalFourierTransform by not summable, do you mean divergent?
– John Glenn
3 hours ago
yes indeed.$$
– AccidentalFourierTransform
3 hours ago
So what exactly happens when Mathematica gives me a numerical answer?
– John Glenn
3 hours ago
AboutRegularization
?
– Î‘λÎÂξανδÃÂο Ζεγγ
3 hours ago
 |Â
show 1 more comment
1
Stirling: $log n!sim nlog n$, and $frac1nlog n$ is not summable.
– AccidentalFourierTransform
3 hours ago
@AccidentalFourierTransform by not summable, do you mean divergent?
– John Glenn
3 hours ago
yes indeed.$$
– AccidentalFourierTransform
3 hours ago
So what exactly happens when Mathematica gives me a numerical answer?
– John Glenn
3 hours ago
AboutRegularization
?
– Î‘λÎÂξανδÃÂο Ζεγγ
3 hours ago
1
1
Stirling: $log n!sim nlog n$, and $frac1nlog n$ is not summable.
– AccidentalFourierTransform
3 hours ago
Stirling: $log n!sim nlog n$, and $frac1nlog n$ is not summable.
– AccidentalFourierTransform
3 hours ago
@AccidentalFourierTransform by not summable, do you mean divergent?
– John Glenn
3 hours ago
@AccidentalFourierTransform by not summable, do you mean divergent?
– John Glenn
3 hours ago
yes indeed.$$
– AccidentalFourierTransform
3 hours ago
yes indeed.$$
– AccidentalFourierTransform
3 hours ago
So what exactly happens when Mathematica gives me a numerical answer?
– John Glenn
3 hours ago
So what exactly happens when Mathematica gives me a numerical answer?
– John Glenn
3 hours ago
About
Regularization
?– Î‘λÎÂξανδÃÂο Ζεγγ
3 hours ago
About
Regularization
?– Î‘λÎÂξανδÃÂο Ζεγγ
3 hours ago
 |Â
show 1 more comment
1 Answer
1
active
oldest
votes
up vote
3
down vote
accepted
As the message shows, NSum works on limited recursions. Mathematica does not consider the "mathematical converge" when it works on NSum. Therefore Mathematica finds that this sum converges too slowly, and threw out the answer after MaxRecursion.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
As the message shows, NSum works on limited recursions. Mathematica does not consider the "mathematical converge" when it works on NSum. Therefore Mathematica finds that this sum converges too slowly, and threw out the answer after MaxRecursion.
add a comment |Â
up vote
3
down vote
accepted
As the message shows, NSum works on limited recursions. Mathematica does not consider the "mathematical converge" when it works on NSum. Therefore Mathematica finds that this sum converges too slowly, and threw out the answer after MaxRecursion.
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
As the message shows, NSum works on limited recursions. Mathematica does not consider the "mathematical converge" when it works on NSum. Therefore Mathematica finds that this sum converges too slowly, and threw out the answer after MaxRecursion.
As the message shows, NSum works on limited recursions. Mathematica does not consider the "mathematical converge" when it works on NSum. Therefore Mathematica finds that this sum converges too slowly, and threw out the answer after MaxRecursion.
answered 3 hours ago


t-smart
893114
893114
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f185209%2fwolfram-says-sum-diverges-but-mathematica-gives-a-numerical-value-for-infinite%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Stirling: $log n!sim nlog n$, and $frac1nlog n$ is not summable.
– AccidentalFourierTransform
3 hours ago
@AccidentalFourierTransform by not summable, do you mean divergent?
– John Glenn
3 hours ago
yes indeed.$$
– AccidentalFourierTransform
3 hours ago
So what exactly happens when Mathematica gives me a numerical answer?
– John Glenn
3 hours ago
About
Regularization
?– Î‘λÎÂξανδÃÂο Ζεγγ
3 hours ago