How to prove the following identity regarding Laplace transforms?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
1












I tried solving it by integrating by parts but i was unsuccessful.




$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$











share|cite|improve this question



















  • 3




    Start from the right hand side.
    – Nosrati
    4 hours ago










  • @Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
    – RockDock
    4 hours ago







  • 2




    by changing variables.
    – Nosrati
    4 hours ago














up vote
4
down vote

favorite
1












I tried solving it by integrating by parts but i was unsuccessful.




$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$











share|cite|improve this question



















  • 3




    Start from the right hand side.
    – Nosrati
    4 hours ago










  • @Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
    – RockDock
    4 hours ago







  • 2




    by changing variables.
    – Nosrati
    4 hours ago












up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





I tried solving it by integrating by parts but i was unsuccessful.




$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$











share|cite|improve this question















I tried solving it by integrating by parts but i was unsuccessful.




$$cal Lleft[int_0^xf(x-t)g(t) dtright]=F(p)G(p)$$








differential-equations laplace-transform






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 32 mins ago









Federico Poloni

2,4091325




2,4091325










asked 4 hours ago









RockDock

533




533







  • 3




    Start from the right hand side.
    – Nosrati
    4 hours ago










  • @Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
    – RockDock
    4 hours ago







  • 2




    by changing variables.
    – Nosrati
    4 hours ago












  • 3




    Start from the right hand side.
    – Nosrati
    4 hours ago










  • @Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
    – RockDock
    4 hours ago







  • 2




    by changing variables.
    – Nosrati
    4 hours ago







3




3




Start from the right hand side.
– Nosrati
4 hours ago




Start from the right hand side.
– Nosrati
4 hours ago












@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
– RockDock
4 hours ago





@Nosrati i am getting two integrals multiplied together.how to bring them in single one ?
– RockDock
4 hours ago





2




2




by changing variables.
– Nosrati
4 hours ago




by changing variables.
– Nosrati
4 hours ago










1 Answer
1






active

oldest

votes

















up vote
6
down vote



accepted










beginalign
F(p) G(p)
&= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
&= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
&= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
&= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
&= cal L(f*g)(t)
endalign






share|cite|improve this answer






















    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983033%2fhow-to-prove-the-following-identity-regarding-laplace-transforms%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    6
    down vote



    accepted










    beginalign
    F(p) G(p)
    &= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
    &= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
    &= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
    &= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
    &= cal L(f*g)(t)
    endalign






    share|cite|improve this answer


























      up vote
      6
      down vote



      accepted










      beginalign
      F(p) G(p)
      &= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
      &= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
      &= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
      &= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
      &= cal L(f*g)(t)
      endalign






      share|cite|improve this answer
























        up vote
        6
        down vote



        accepted







        up vote
        6
        down vote



        accepted






        beginalign
        F(p) G(p)
        &= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
        &= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
        &= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
        &= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
        &= cal L(f*g)(t)
        endalign






        share|cite|improve this answer














        beginalign
        F(p) G(p)
        &= int_0^infty e^-puf(u) duint_0^infty e^-pvg(v) dv \
        &= int_0^inftyint_0^infty e^-p(u+v)f(u)g(v) du dv ,,, , ,,, textu+v=t ,, , ,, textv=x\
        &= int_0^inftyint_x^infty e^-ptf(t-x)g(x) dt dx ,, , ,, textchanging order of integration\
        &= int_0^infty e^-ptBig[int_0^tf(t-x)g(x) dx Big] dt \
        &= cal L(f*g)(t)
        endalign







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 hours ago

























        answered 4 hours ago









        Nosrati

        25k62052




        25k62052



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2983033%2fhow-to-prove-the-following-identity-regarding-laplace-transforms%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What does second last employer means? [closed]

            Installing NextGIS Connect into QGIS 3?

            One-line joke