Visualizing a function on a sphere
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
What is the best way to visualize a real function on a sphere as a mountain, using spherical coordinates?
I would like to plot ArcCos[Cos[longitude] * Cos[latitude]]
on a sphere in a way that I can see the sphere and the function on it like a mountain above the sea.
So the sphere should have radius 10, show the poles and the equator, and I should be able to the see both the sphere and the function above it. What is the best way? Ideally, I would be able to rotate the result with my mouse ...
plotting
New contributor
add a comment |Â
up vote
1
down vote
favorite
What is the best way to visualize a real function on a sphere as a mountain, using spherical coordinates?
I would like to plot ArcCos[Cos[longitude] * Cos[latitude]]
on a sphere in a way that I can see the sphere and the function on it like a mountain above the sea.
So the sphere should have radius 10, show the poles and the equator, and I should be able to the see both the sphere and the function above it. What is the best way? Ideally, I would be able to rotate the result with my mouse ...
plotting
New contributor
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
What is the best way to visualize a real function on a sphere as a mountain, using spherical coordinates?
I would like to plot ArcCos[Cos[longitude] * Cos[latitude]]
on a sphere in a way that I can see the sphere and the function on it like a mountain above the sea.
So the sphere should have radius 10, show the poles and the equator, and I should be able to the see both the sphere and the function above it. What is the best way? Ideally, I would be able to rotate the result with my mouse ...
plotting
New contributor
What is the best way to visualize a real function on a sphere as a mountain, using spherical coordinates?
I would like to plot ArcCos[Cos[longitude] * Cos[latitude]]
on a sphere in a way that I can see the sphere and the function on it like a mountain above the sea.
So the sphere should have radius 10, show the poles and the equator, and I should be able to the see both the sphere and the function above it. What is the best way? Ideally, I would be able to rotate the result with my mouse ...
plotting
plotting
New contributor
New contributor
edited 1 hour ago
Henrik Schumacher
43.7k263129
43.7k263129
New contributor
asked 2 hours ago
Clara
61
61
New contributor
New contributor
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
I suppose it could be like this. Change the "5" to change the scale of the sphere.
ParametricPlot3D[5 Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]],
Sin[[Theta]], (5 +
ArcCos[Cos[[Phi]] Cos[[Theta]]]) Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]], Sin[[Theta]], [Phi], -Pi,
Pi, [Theta], -Pi/2, Pi/2, PlotStyle -> Opacity[0.5],
AxesLabel -> "x", "y", "z", ColorFunctionScaling -> False]
add a comment |Â
up vote
1
down vote
Maybe this is waht you look for?
ParametricPlot3D[
(10 + ArcCos[Cos[ÃÂ] Cos[ø]]) Cos[ÃÂ] Cos[ø], Sin[ÃÂ] Cos[ø], Sin[ø],
ÃÂ, -Pi, Pi, ø, -Pi/2, Pi/2,
ColorFunction -> Function[x, y, z, ÃÂ, ø, ColorData["AlpineColors"][Sqrt[x^2 + y^2 + z^2] - 12]],
AxesLabel -> "x", "y", "z",
ColorFunctionScaling -> False
]
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
I suppose it could be like this. Change the "5" to change the scale of the sphere.
ParametricPlot3D[5 Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]],
Sin[[Theta]], (5 +
ArcCos[Cos[[Phi]] Cos[[Theta]]]) Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]], Sin[[Theta]], [Phi], -Pi,
Pi, [Theta], -Pi/2, Pi/2, PlotStyle -> Opacity[0.5],
AxesLabel -> "x", "y", "z", ColorFunctionScaling -> False]
add a comment |Â
up vote
2
down vote
I suppose it could be like this. Change the "5" to change the scale of the sphere.
ParametricPlot3D[5 Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]],
Sin[[Theta]], (5 +
ArcCos[Cos[[Phi]] Cos[[Theta]]]) Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]], Sin[[Theta]], [Phi], -Pi,
Pi, [Theta], -Pi/2, Pi/2, PlotStyle -> Opacity[0.5],
AxesLabel -> "x", "y", "z", ColorFunctionScaling -> False]
add a comment |Â
up vote
2
down vote
up vote
2
down vote
I suppose it could be like this. Change the "5" to change the scale of the sphere.
ParametricPlot3D[5 Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]],
Sin[[Theta]], (5 +
ArcCos[Cos[[Phi]] Cos[[Theta]]]) Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]], Sin[[Theta]], [Phi], -Pi,
Pi, [Theta], -Pi/2, Pi/2, PlotStyle -> Opacity[0.5],
AxesLabel -> "x", "y", "z", ColorFunctionScaling -> False]
I suppose it could be like this. Change the "5" to change the scale of the sphere.
ParametricPlot3D[5 Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]],
Sin[[Theta]], (5 +
ArcCos[Cos[[Phi]] Cos[[Theta]]]) Cos[[Phi]] Cos[[Theta]],
Sin[[Phi]] Cos[[Theta]], Sin[[Theta]], [Phi], -Pi,
Pi, [Theta], -Pi/2, Pi/2, PlotStyle -> Opacity[0.5],
AxesLabel -> "x", "y", "z", ColorFunctionScaling -> False]
answered 1 hour ago
t-smart
1,003114
1,003114
add a comment |Â
add a comment |Â
up vote
1
down vote
Maybe this is waht you look for?
ParametricPlot3D[
(10 + ArcCos[Cos[ÃÂ] Cos[ø]]) Cos[ÃÂ] Cos[ø], Sin[ÃÂ] Cos[ø], Sin[ø],
ÃÂ, -Pi, Pi, ø, -Pi/2, Pi/2,
ColorFunction -> Function[x, y, z, ÃÂ, ø, ColorData["AlpineColors"][Sqrt[x^2 + y^2 + z^2] - 12]],
AxesLabel -> "x", "y", "z",
ColorFunctionScaling -> False
]
add a comment |Â
up vote
1
down vote
Maybe this is waht you look for?
ParametricPlot3D[
(10 + ArcCos[Cos[ÃÂ] Cos[ø]]) Cos[ÃÂ] Cos[ø], Sin[ÃÂ] Cos[ø], Sin[ø],
ÃÂ, -Pi, Pi, ø, -Pi/2, Pi/2,
ColorFunction -> Function[x, y, z, ÃÂ, ø, ColorData["AlpineColors"][Sqrt[x^2 + y^2 + z^2] - 12]],
AxesLabel -> "x", "y", "z",
ColorFunctionScaling -> False
]
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Maybe this is waht you look for?
ParametricPlot3D[
(10 + ArcCos[Cos[ÃÂ] Cos[ø]]) Cos[ÃÂ] Cos[ø], Sin[ÃÂ] Cos[ø], Sin[ø],
ÃÂ, -Pi, Pi, ø, -Pi/2, Pi/2,
ColorFunction -> Function[x, y, z, ÃÂ, ø, ColorData["AlpineColors"][Sqrt[x^2 + y^2 + z^2] - 12]],
AxesLabel -> "x", "y", "z",
ColorFunctionScaling -> False
]
Maybe this is waht you look for?
ParametricPlot3D[
(10 + ArcCos[Cos[ÃÂ] Cos[ø]]) Cos[ÃÂ] Cos[ø], Sin[ÃÂ] Cos[ø], Sin[ø],
ÃÂ, -Pi, Pi, ø, -Pi/2, Pi/2,
ColorFunction -> Function[x, y, z, ÃÂ, ø, ColorData["AlpineColors"][Sqrt[x^2 + y^2 + z^2] - 12]],
AxesLabel -> "x", "y", "z",
ColorFunctionScaling -> False
]
answered 1 hour ago
Henrik Schumacher
43.7k263129
43.7k263129
add a comment |Â
add a comment |Â
Clara is a new contributor. Be nice, and check out our Code of Conduct.
Clara is a new contributor. Be nice, and check out our Code of Conduct.
Clara is a new contributor. Be nice, and check out our Code of Conduct.
Clara is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f185224%2fvisualizing-a-function-on-a-sphere%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password