On the bound of an integral of a differentiable function with bounded derivative
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let $f:[0,1]to mathbb R$ be a differentiable function such that $sup_xin[0,1]|f'(x)|$ exists.
If $int_0^1xf(x)dx=0$, then how to show that $36|int_0^1x^2f(x) dx|le sup_xin[0,1]|f'(x)|$ ?
real-analysis integration derivatives continuity riemann-integration
add a comment |Â
up vote
1
down vote
favorite
Let $f:[0,1]to mathbb R$ be a differentiable function such that $sup_xin[0,1]|f'(x)|$ exists.
If $int_0^1xf(x)dx=0$, then how to show that $36|int_0^1x^2f(x) dx|le sup_xin[0,1]|f'(x)|$ ?
real-analysis integration derivatives continuity riemann-integration
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $f:[0,1]to mathbb R$ be a differentiable function such that $sup_xin[0,1]|f'(x)|$ exists.
If $int_0^1xf(x)dx=0$, then how to show that $36|int_0^1x^2f(x) dx|le sup_xin[0,1]|f'(x)|$ ?
real-analysis integration derivatives continuity riemann-integration
Let $f:[0,1]to mathbb R$ be a differentiable function such that $sup_xin[0,1]|f'(x)|$ exists.
If $int_0^1xf(x)dx=0$, then how to show that $36|int_0^1x^2f(x) dx|le sup_xin[0,1]|f'(x)|$ ?
real-analysis integration derivatives continuity riemann-integration
real-analysis integration derivatives continuity riemann-integration
asked 4 hours ago
user521337
351113
351113
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
4
down vote
accepted
Hint. For any real $a$, by integration by parts,
$$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
&=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
&=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$
Now choose an appropriate value for $a$. Can you take it from here?
I'm not sure whether you did that integration by parts correctly or not ...
– user521337
3 hours ago
Sorry, I forgot a term...
– Robert Z
3 hours ago
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Hint. For any real $a$, by integration by parts,
$$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
&=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
&=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$
Now choose an appropriate value for $a$. Can you take it from here?
I'm not sure whether you did that integration by parts correctly or not ...
– user521337
3 hours ago
Sorry, I forgot a term...
– Robert Z
3 hours ago
add a comment |Â
up vote
4
down vote
accepted
Hint. For any real $a$, by integration by parts,
$$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
&=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
&=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$
Now choose an appropriate value for $a$. Can you take it from here?
I'm not sure whether you did that integration by parts correctly or not ...
– user521337
3 hours ago
Sorry, I forgot a term...
– Robert Z
3 hours ago
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Hint. For any real $a$, by integration by parts,
$$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
&=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
&=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$
Now choose an appropriate value for $a$. Can you take it from here?
Hint. For any real $a$, by integration by parts,
$$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
&=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
&=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$
Now choose an appropriate value for $a$. Can you take it from here?
edited 3 hours ago
answered 3 hours ago


Robert Z
88.3k1056127
88.3k1056127
I'm not sure whether you did that integration by parts correctly or not ...
– user521337
3 hours ago
Sorry, I forgot a term...
– Robert Z
3 hours ago
add a comment |Â
I'm not sure whether you did that integration by parts correctly or not ...
– user521337
3 hours ago
Sorry, I forgot a term...
– Robert Z
3 hours ago
I'm not sure whether you did that integration by parts correctly or not ...
– user521337
3 hours ago
I'm not sure whether you did that integration by parts correctly or not ...
– user521337
3 hours ago
Sorry, I forgot a term...
– Robert Z
3 hours ago
Sorry, I forgot a term...
– Robert Z
3 hours ago
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982667%2fon-the-bound-of-an-integral-of-a-differentiable-function-with-bounded-derivative%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password