On the bound of an integral of a differentiable function with bounded derivative

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $f:[0,1]to mathbb R$ be a differentiable function such that $sup_xin[0,1]|f'(x)|$ exists.



If $int_0^1xf(x)dx=0$, then how to show that $36|int_0^1x^2f(x) dx|le sup_xin[0,1]|f'(x)|$ ?










share|cite|improve this question

























    up vote
    1
    down vote

    favorite












    Let $f:[0,1]to mathbb R$ be a differentiable function such that $sup_xin[0,1]|f'(x)|$ exists.



    If $int_0^1xf(x)dx=0$, then how to show that $36|int_0^1x^2f(x) dx|le sup_xin[0,1]|f'(x)|$ ?










    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      Let $f:[0,1]to mathbb R$ be a differentiable function such that $sup_xin[0,1]|f'(x)|$ exists.



      If $int_0^1xf(x)dx=0$, then how to show that $36|int_0^1x^2f(x) dx|le sup_xin[0,1]|f'(x)|$ ?










      share|cite|improve this question













      Let $f:[0,1]to mathbb R$ be a differentiable function such that $sup_xin[0,1]|f'(x)|$ exists.



      If $int_0^1xf(x)dx=0$, then how to show that $36|int_0^1x^2f(x) dx|le sup_xin[0,1]|f'(x)|$ ?







      real-analysis integration derivatives continuity riemann-integration






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      user521337

      351113




      351113




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          4
          down vote



          accepted










          Hint. For any real $a$, by integration by parts,
          $$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
          &=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
          &=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$

          Now choose an appropriate value for $a$. Can you take it from here?






          share|cite|improve this answer






















          • I'm not sure whether you did that integration by parts correctly or not ...
            – user521337
            3 hours ago










          • Sorry, I forgot a term...
            – Robert Z
            3 hours ago










          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982667%2fon-the-bound-of-an-integral-of-a-differentiable-function-with-bounded-derivative%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          4
          down vote



          accepted










          Hint. For any real $a$, by integration by parts,
          $$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
          &=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
          &=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$

          Now choose an appropriate value for $a$. Can you take it from here?






          share|cite|improve this answer






















          • I'm not sure whether you did that integration by parts correctly or not ...
            – user521337
            3 hours ago










          • Sorry, I forgot a term...
            – Robert Z
            3 hours ago














          up vote
          4
          down vote



          accepted










          Hint. For any real $a$, by integration by parts,
          $$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
          &=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
          &=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$

          Now choose an appropriate value for $a$. Can you take it from here?






          share|cite|improve this answer






















          • I'm not sure whether you did that integration by parts correctly or not ...
            – user521337
            3 hours ago










          • Sorry, I forgot a term...
            – Robert Z
            3 hours ago












          up vote
          4
          down vote



          accepted







          up vote
          4
          down vote



          accepted






          Hint. For any real $a$, by integration by parts,
          $$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
          &=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
          &=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$

          Now choose an appropriate value for $a$. Can you take it from here?






          share|cite|improve this answer














          Hint. For any real $a$, by integration by parts,
          $$beginalignint_0^1x^2f(x) dx&=int_0^1(x^2-ax)f(x) dx\
          &=left[left(fracx^33-fracax^22right)f(x)right]_0^1-int_0^1left(fracx^33-fracax^22right)f'(x)dx\
          &=left(frac13-fraca2right)f(1)+int_0^1left(fracax^22-fracx^33right)f'(x)dxendalign$$

          Now choose an appropriate value for $a$. Can you take it from here?







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 3 hours ago

























          answered 3 hours ago









          Robert Z

          88.3k1056127




          88.3k1056127











          • I'm not sure whether you did that integration by parts correctly or not ...
            – user521337
            3 hours ago










          • Sorry, I forgot a term...
            – Robert Z
            3 hours ago
















          • I'm not sure whether you did that integration by parts correctly or not ...
            – user521337
            3 hours ago










          • Sorry, I forgot a term...
            – Robert Z
            3 hours ago















          I'm not sure whether you did that integration by parts correctly or not ...
          – user521337
          3 hours ago




          I'm not sure whether you did that integration by parts correctly or not ...
          – user521337
          3 hours ago












          Sorry, I forgot a term...
          – Robert Z
          3 hours ago




          Sorry, I forgot a term...
          – Robert Z
          3 hours ago

















           

          draft saved


          draft discarded















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2982667%2fon-the-bound-of-an-integral-of-a-differentiable-function-with-bounded-derivative%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What does second last employer means? [closed]

          List of Gilmore Girls characters

          Confectionery