Elementary number theory, prime numbers
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Let $p$ and $q$ be two different prime numbers, and $a$ a positive integer. Show that $A$ = $a^pq$ - $a^p$ - $a^q$ + $a$ can be divided by $pq$
I started by rewriting $A$ as : (($a^p)^q$ - $a^p$) - ($a^q$ - $a$) but I'm not sure how to go from here
elementary-number-theory prime-numbers arithmetic
add a comment |Â
up vote
3
down vote
favorite
Let $p$ and $q$ be two different prime numbers, and $a$ a positive integer. Show that $A$ = $a^pq$ - $a^p$ - $a^q$ + $a$ can be divided by $pq$
I started by rewriting $A$ as : (($a^p)^q$ - $a^p$) - ($a^q$ - $a$) but I'm not sure how to go from here
elementary-number-theory prime-numbers arithmetic
There is a contradiction in your formulas; the first one has $-a^q-a^q$, the second has $-a^p-a^q$. Do you know little Fermat?
â Dietrich Burde
1 hour ago
1
Use Euler's theorem.
â Jakobian
1 hour ago
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Let $p$ and $q$ be two different prime numbers, and $a$ a positive integer. Show that $A$ = $a^pq$ - $a^p$ - $a^q$ + $a$ can be divided by $pq$
I started by rewriting $A$ as : (($a^p)^q$ - $a^p$) - ($a^q$ - $a$) but I'm not sure how to go from here
elementary-number-theory prime-numbers arithmetic
Let $p$ and $q$ be two different prime numbers, and $a$ a positive integer. Show that $A$ = $a^pq$ - $a^p$ - $a^q$ + $a$ can be divided by $pq$
I started by rewriting $A$ as : (($a^p)^q$ - $a^p$) - ($a^q$ - $a$) but I'm not sure how to go from here
elementary-number-theory prime-numbers arithmetic
elementary-number-theory prime-numbers arithmetic
edited 1 hour ago
asked 1 hour ago
Alli Henne
356
356
There is a contradiction in your formulas; the first one has $-a^q-a^q$, the second has $-a^p-a^q$. Do you know little Fermat?
â Dietrich Burde
1 hour ago
1
Use Euler's theorem.
â Jakobian
1 hour ago
add a comment |Â
There is a contradiction in your formulas; the first one has $-a^q-a^q$, the second has $-a^p-a^q$. Do you know little Fermat?
â Dietrich Burde
1 hour ago
1
Use Euler's theorem.
â Jakobian
1 hour ago
There is a contradiction in your formulas; the first one has $-a^q-a^q$, the second has $-a^p-a^q$. Do you know little Fermat?
â Dietrich Burde
1 hour ago
There is a contradiction in your formulas; the first one has $-a^q-a^q$, the second has $-a^p-a^q$. Do you know little Fermat?
â Dietrich Burde
1 hour ago
1
1
Use Euler's theorem.
â Jakobian
1 hour ago
Use Euler's theorem.
â Jakobian
1 hour ago
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
4
down vote
accepted
It suffices to show that both $p$ and $q$ divide$$a^pq-a^p-a^q+a $$
Note that $$a^p equiv a mod (p)$$ therefore $$a^pq equiv a^q mod (p)$$Thus $$a^pq-a^p-a^q-a equiv a^q-a^p-a^q+a equiv 0 mod (p)$$
Similarly we can show that $$a^pq-a^p-a^q-a equiv 0 mod (q)$$
add a comment |Â
up vote
2
down vote
Use little Fermat, if $p$ is a prime number and $a$ a intenger then
$p|(a^p - a)$
So, $p|((a^q)^p - a^q$), and $p|(a^p - a)$
Then $p$ divides the difference, $p|((a^q)^p - a^q - a^p + a)$
Doing the same for $q$, we have $q|((a^p)^q - a^p - a^q + a)$
Then as $(p,q) = 1$, we have $pq|(a^pq - a^p - a^q + a)$
Well, $(p,q) = 1$, then there exists $s,t in mathbbZ$ such that $1 = ps + qt$
So if $p|c$ and $q|c$, then $ c = pk = qr$, with $k,r in mathbbZ$ then $c = c.1 = c(ps + qt) = cps + cqt = qrps + pkqt) = qp (rs + kt)$
Then $pq|c$
New contributor
add a comment |Â
up vote
1
down vote
I suppose you mean $pq$ divides $, a^pq-a^p-a^q+a$, i.e.
$$ a^pq-a^p-a^q+aequiv 0pmodpq.$$
Hint:
By the Chinese remainder theorem, it amounts to proving it is congruent to $0$ $bmod p$ and $bmod q$.
As $p$ and $q$ are prime, remember Little Fermat can be formulated as
$$forall a,: a^pequiv apmod p$$
and similarly for $q$.
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
It suffices to show that both $p$ and $q$ divide$$a^pq-a^p-a^q+a $$
Note that $$a^p equiv a mod (p)$$ therefore $$a^pq equiv a^q mod (p)$$Thus $$a^pq-a^p-a^q-a equiv a^q-a^p-a^q+a equiv 0 mod (p)$$
Similarly we can show that $$a^pq-a^p-a^q-a equiv 0 mod (q)$$
add a comment |Â
up vote
4
down vote
accepted
It suffices to show that both $p$ and $q$ divide$$a^pq-a^p-a^q+a $$
Note that $$a^p equiv a mod (p)$$ therefore $$a^pq equiv a^q mod (p)$$Thus $$a^pq-a^p-a^q-a equiv a^q-a^p-a^q+a equiv 0 mod (p)$$
Similarly we can show that $$a^pq-a^p-a^q-a equiv 0 mod (q)$$
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
It suffices to show that both $p$ and $q$ divide$$a^pq-a^p-a^q+a $$
Note that $$a^p equiv a mod (p)$$ therefore $$a^pq equiv a^q mod (p)$$Thus $$a^pq-a^p-a^q-a equiv a^q-a^p-a^q+a equiv 0 mod (p)$$
Similarly we can show that $$a^pq-a^p-a^q-a equiv 0 mod (q)$$
It suffices to show that both $p$ and $q$ divide$$a^pq-a^p-a^q+a $$
Note that $$a^p equiv a mod (p)$$ therefore $$a^pq equiv a^q mod (p)$$Thus $$a^pq-a^p-a^q-a equiv a^q-a^p-a^q+a equiv 0 mod (p)$$
Similarly we can show that $$a^pq-a^p-a^q-a equiv 0 mod (q)$$
answered 1 hour ago
Mohammad Riazi-Kermani
37k41956
37k41956
add a comment |Â
add a comment |Â
up vote
2
down vote
Use little Fermat, if $p$ is a prime number and $a$ a intenger then
$p|(a^p - a)$
So, $p|((a^q)^p - a^q$), and $p|(a^p - a)$
Then $p$ divides the difference, $p|((a^q)^p - a^q - a^p + a)$
Doing the same for $q$, we have $q|((a^p)^q - a^p - a^q + a)$
Then as $(p,q) = 1$, we have $pq|(a^pq - a^p - a^q + a)$
Well, $(p,q) = 1$, then there exists $s,t in mathbbZ$ such that $1 = ps + qt$
So if $p|c$ and $q|c$, then $ c = pk = qr$, with $k,r in mathbbZ$ then $c = c.1 = c(ps + qt) = cps + cqt = qrps + pkqt) = qp (rs + kt)$
Then $pq|c$
New contributor
add a comment |Â
up vote
2
down vote
Use little Fermat, if $p$ is a prime number and $a$ a intenger then
$p|(a^p - a)$
So, $p|((a^q)^p - a^q$), and $p|(a^p - a)$
Then $p$ divides the difference, $p|((a^q)^p - a^q - a^p + a)$
Doing the same for $q$, we have $q|((a^p)^q - a^p - a^q + a)$
Then as $(p,q) = 1$, we have $pq|(a^pq - a^p - a^q + a)$
Well, $(p,q) = 1$, then there exists $s,t in mathbbZ$ such that $1 = ps + qt$
So if $p|c$ and $q|c$, then $ c = pk = qr$, with $k,r in mathbbZ$ then $c = c.1 = c(ps + qt) = cps + cqt = qrps + pkqt) = qp (rs + kt)$
Then $pq|c$
New contributor
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Use little Fermat, if $p$ is a prime number and $a$ a intenger then
$p|(a^p - a)$
So, $p|((a^q)^p - a^q$), and $p|(a^p - a)$
Then $p$ divides the difference, $p|((a^q)^p - a^q - a^p + a)$
Doing the same for $q$, we have $q|((a^p)^q - a^p - a^q + a)$
Then as $(p,q) = 1$, we have $pq|(a^pq - a^p - a^q + a)$
Well, $(p,q) = 1$, then there exists $s,t in mathbbZ$ such that $1 = ps + qt$
So if $p|c$ and $q|c$, then $ c = pk = qr$, with $k,r in mathbbZ$ then $c = c.1 = c(ps + qt) = cps + cqt = qrps + pkqt) = qp (rs + kt)$
Then $pq|c$
New contributor
Use little Fermat, if $p$ is a prime number and $a$ a intenger then
$p|(a^p - a)$
So, $p|((a^q)^p - a^q$), and $p|(a^p - a)$
Then $p$ divides the difference, $p|((a^q)^p - a^q - a^p + a)$
Doing the same for $q$, we have $q|((a^p)^q - a^p - a^q + a)$
Then as $(p,q) = 1$, we have $pq|(a^pq - a^p - a^q + a)$
Well, $(p,q) = 1$, then there exists $s,t in mathbbZ$ such that $1 = ps + qt$
So if $p|c$ and $q|c$, then $ c = pk = qr$, with $k,r in mathbbZ$ then $c = c.1 = c(ps + qt) = cps + cqt = qrps + pkqt) = qp (rs + kt)$
Then $pq|c$
New contributor
edited 45 mins ago
New contributor
answered 1 hour ago
ZAF
212
212
New contributor
New contributor
add a comment |Â
add a comment |Â
up vote
1
down vote
I suppose you mean $pq$ divides $, a^pq-a^p-a^q+a$, i.e.
$$ a^pq-a^p-a^q+aequiv 0pmodpq.$$
Hint:
By the Chinese remainder theorem, it amounts to proving it is congruent to $0$ $bmod p$ and $bmod q$.
As $p$ and $q$ are prime, remember Little Fermat can be formulated as
$$forall a,: a^pequiv apmod p$$
and similarly for $q$.
add a comment |Â
up vote
1
down vote
I suppose you mean $pq$ divides $, a^pq-a^p-a^q+a$, i.e.
$$ a^pq-a^p-a^q+aequiv 0pmodpq.$$
Hint:
By the Chinese remainder theorem, it amounts to proving it is congruent to $0$ $bmod p$ and $bmod q$.
As $p$ and $q$ are prime, remember Little Fermat can be formulated as
$$forall a,: a^pequiv apmod p$$
and similarly for $q$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
I suppose you mean $pq$ divides $, a^pq-a^p-a^q+a$, i.e.
$$ a^pq-a^p-a^q+aequiv 0pmodpq.$$
Hint:
By the Chinese remainder theorem, it amounts to proving it is congruent to $0$ $bmod p$ and $bmod q$.
As $p$ and $q$ are prime, remember Little Fermat can be formulated as
$$forall a,: a^pequiv apmod p$$
and similarly for $q$.
I suppose you mean $pq$ divides $, a^pq-a^p-a^q+a$, i.e.
$$ a^pq-a^p-a^q+aequiv 0pmodpq.$$
Hint:
By the Chinese remainder theorem, it amounts to proving it is congruent to $0$ $bmod p$ and $bmod q$.
As $p$ and $q$ are prime, remember Little Fermat can be formulated as
$$forall a,: a^pequiv apmod p$$
and similarly for $q$.
answered 1 hour ago
Bernard
114k637106
114k637106
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2976402%2felementary-number-theory-prime-numbers%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
There is a contradiction in your formulas; the first one has $-a^q-a^q$, the second has $-a^p-a^q$. Do you know little Fermat?
â Dietrich Burde
1 hour ago
1
Use Euler's theorem.
â Jakobian
1 hour ago