Simplify or upper bound this summation

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
1












I am not a mathematician, so sorry for this trivial question. Is there a way to simplify or to upper bound the following summation: $$sum_i=1^n e^frac-i^2sigma^2 $$
Can I apply the geometric series?



EDIT: I have a difficulty because of the power $2$, i.e if the summation is in this way $sum_i=1^n e^frac-isigma^2 $ then it is easy to apply the geometric series!!










share|cite|improve this question



















  • 1




    Don't be sorry for the question! The only way to get better as mathematician is to ask questions. (See also the first annotation to this post)
    – Jacob Manaker
    3 hours ago






  • 1




    Seems that you could try the integral $int_0^infty exp(-x^2),mathrm dx$ to bound that.
    – xbh
    3 hours ago














up vote
4
down vote

favorite
1












I am not a mathematician, so sorry for this trivial question. Is there a way to simplify or to upper bound the following summation: $$sum_i=1^n e^frac-i^2sigma^2 $$
Can I apply the geometric series?



EDIT: I have a difficulty because of the power $2$, i.e if the summation is in this way $sum_i=1^n e^frac-isigma^2 $ then it is easy to apply the geometric series!!










share|cite|improve this question



















  • 1




    Don't be sorry for the question! The only way to get better as mathematician is to ask questions. (See also the first annotation to this post)
    – Jacob Manaker
    3 hours ago






  • 1




    Seems that you could try the integral $int_0^infty exp(-x^2),mathrm dx$ to bound that.
    – xbh
    3 hours ago












up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





I am not a mathematician, so sorry for this trivial question. Is there a way to simplify or to upper bound the following summation: $$sum_i=1^n e^frac-i^2sigma^2 $$
Can I apply the geometric series?



EDIT: I have a difficulty because of the power $2$, i.e if the summation is in this way $sum_i=1^n e^frac-isigma^2 $ then it is easy to apply the geometric series!!










share|cite|improve this question















I am not a mathematician, so sorry for this trivial question. Is there a way to simplify or to upper bound the following summation: $$sum_i=1^n e^frac-i^2sigma^2 $$
Can I apply the geometric series?



EDIT: I have a difficulty because of the power $2$, i.e if the summation is in this way $sum_i=1^n e^frac-isigma^2 $ then it is easy to apply the geometric series!!







sequences-and-series geometric-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago

























asked 3 hours ago









user8003788

213




213







  • 1




    Don't be sorry for the question! The only way to get better as mathematician is to ask questions. (See also the first annotation to this post)
    – Jacob Manaker
    3 hours ago






  • 1




    Seems that you could try the integral $int_0^infty exp(-x^2),mathrm dx$ to bound that.
    – xbh
    3 hours ago












  • 1




    Don't be sorry for the question! The only way to get better as mathematician is to ask questions. (See also the first annotation to this post)
    – Jacob Manaker
    3 hours ago






  • 1




    Seems that you could try the integral $int_0^infty exp(-x^2),mathrm dx$ to bound that.
    – xbh
    3 hours ago







1




1




Don't be sorry for the question! The only way to get better as mathematician is to ask questions. (See also the first annotation to this post)
– Jacob Manaker
3 hours ago




Don't be sorry for the question! The only way to get better as mathematician is to ask questions. (See also the first annotation to this post)
– Jacob Manaker
3 hours ago




1




1




Seems that you could try the integral $int_0^infty exp(-x^2),mathrm dx$ to bound that.
– xbh
3 hours ago




Seems that you could try the integral $int_0^infty exp(-x^2),mathrm dx$ to bound that.
– xbh
3 hours ago










2 Answers
2






active

oldest

votes

















up vote
3
down vote













Alternative:



Since $f(x) = exp(-x^2/sigma^2) searrow 0$, we can write
$
DeclareMathOperatordiff,d!
$
beginalign*
&sum_1^n expleft(-frac j^2sigma^2right) \
&= sum_1^n int_j-1^j expleft(-frac j^2sigma^2right)diff x \
&leqslant sum_1^n int_j-1^j expleft(-frac x^2sigma^2right) diff x \
&=sigma int_0^n expleft(-frac x^2sigma^2right) diff left(frac x sigma right)\
&= sigma int_0^n/sigma exp(-x^2)diff x\
&leqslant sigma int_0^+inftyexp(-x^2)diff x\
&= frac sigma 2 sqrt pi
endalign*






share|cite|improve this answer
















  • 1




    Nicely done! Sometimes simplest is best.
    – Jacob Manaker
    1 hour ago

















up vote
3
down vote













TL;DR: three relatively easy bounds are the numbered equations below.



You cannot directly apply the formula for the geometric series for the reason mentioned in your edit. But note that $igeq1$, so we have $$sum_i=1^nexpleft(-fraci^2sigma^2right)leqsum_i=1^nexpleft(-fracicdot1sigma^2right)$$ The latter, of course, is a geometric sum. Taking the sum over all $i$ (including $i=0$), we get $$(1-e^-sigma^-2)^-1 tag1 labeleqn:first$$ The calculation for finitely many terms isn't much harder, and only differs by an exponentially decreasing factor.



If this isn't a strong enough bound, there are other techniques. If $n<sigma$, then we can get very far elementarily. Note that $e^xgeq x+1$; dividing each side, we get $$e^-xleq(1+x)^-1=sum_k=0^infty(-x)^k$$ if $|x|<1$. Taking $x=left(fracisigmaright)^2$, we thus obtain beginalign*
sum_i=1^ne^-fraci^2sigma^2&leqsum_i=1^nsum_k=0^inftyleft(-left(fracisigmaright)^2right)^k \
&=sum_k=0^infty(-1)^ksum_i=1^nleft(fracisigmaright)^2k tag* labeleqn:star
endalign*



(We can interchange sums because one is finite.) Now, for all $k$, the function $left(fraccdotsigmaright)^2k$ is increasing on $[0,infty)$; we thus have $$int_0^nleft(fracisigmaright)^2k,dileqsum_i=1^nleft(fracisigmaright)^2kleqleft(fracnsigmaright)^2k+int_1^nleft(fracisigmaright)^2k,di$$ Evaluating the integrals and simplifying, we have $$0leqsum_i=1^nleft(fracisigmaright)^2k-fracn2k+1left(fracnsigmaright)^2kleqleft(fracnsigmaright)^2kleft(1-frac1(2k+1)n^2kright)$$



Substituting into $eqrefeqn:star$, we get beginalign*
sum_i=1^ne^-fraci^2sigma^2&leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2left(1-frac1(4j+3)n^4j+2right) \
&leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2 \
&=sigmatan^-1left(fracnsigmaright)-fracleft(fracnsigmaright)^21-left(fracnsigmaright)^4hspace4em(n<sigma) tag2
endalign*



Finally, for the general case we can achieve a slight improvement on $eqrefeqn:first$ via the theory of majorization. $x_i_i=1^nmapstosum_i=1^nexpleft(-fracx_isigma^2right)$ is convex and symmetric in its arguments, hence Schur-convex. Let $b_i=i^2$ and $a_i=left(frac2n-13right)i$. Clearly, for all $mleq n$, we have $$sum_i=1^ma_i=fracm(m-1)2cdotfrac2n-13geqfracm(m-1)(2m-1)6=sum_i=1^mb_i$$ with equality if $m=n$. Thus $veca$ majorizes $vecb$, so beginalign*
sum_i=1^nexpleft(-fraci^2sigma^2right)&=sum_i=1^nexpleft(-fracb_isigma^2right) \
&leqsum_i=1^nexpleft(-fraca_isigma^2right) \
&=sum_i=1^nexpleft(-frac(2n-1)i3sigma^2right) \
&leqsum_i=0^inftyexpleft(-frac(2n-1)i3sigma^2right) \
&leqleft(1-expleft(frac2n-13sigma^2right)right)^-1 tag3
endalign*






share|cite|improve this answer






















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2921700%2fsimplify-or-upper-bound-this-summation%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    3
    down vote













    Alternative:



    Since $f(x) = exp(-x^2/sigma^2) searrow 0$, we can write
    $
    DeclareMathOperatordiff,d!
    $
    beginalign*
    &sum_1^n expleft(-frac j^2sigma^2right) \
    &= sum_1^n int_j-1^j expleft(-frac j^2sigma^2right)diff x \
    &leqslant sum_1^n int_j-1^j expleft(-frac x^2sigma^2right) diff x \
    &=sigma int_0^n expleft(-frac x^2sigma^2right) diff left(frac x sigma right)\
    &= sigma int_0^n/sigma exp(-x^2)diff x\
    &leqslant sigma int_0^+inftyexp(-x^2)diff x\
    &= frac sigma 2 sqrt pi
    endalign*






    share|cite|improve this answer
















    • 1




      Nicely done! Sometimes simplest is best.
      – Jacob Manaker
      1 hour ago














    up vote
    3
    down vote













    Alternative:



    Since $f(x) = exp(-x^2/sigma^2) searrow 0$, we can write
    $
    DeclareMathOperatordiff,d!
    $
    beginalign*
    &sum_1^n expleft(-frac j^2sigma^2right) \
    &= sum_1^n int_j-1^j expleft(-frac j^2sigma^2right)diff x \
    &leqslant sum_1^n int_j-1^j expleft(-frac x^2sigma^2right) diff x \
    &=sigma int_0^n expleft(-frac x^2sigma^2right) diff left(frac x sigma right)\
    &= sigma int_0^n/sigma exp(-x^2)diff x\
    &leqslant sigma int_0^+inftyexp(-x^2)diff x\
    &= frac sigma 2 sqrt pi
    endalign*






    share|cite|improve this answer
















    • 1




      Nicely done! Sometimes simplest is best.
      – Jacob Manaker
      1 hour ago












    up vote
    3
    down vote










    up vote
    3
    down vote









    Alternative:



    Since $f(x) = exp(-x^2/sigma^2) searrow 0$, we can write
    $
    DeclareMathOperatordiff,d!
    $
    beginalign*
    &sum_1^n expleft(-frac j^2sigma^2right) \
    &= sum_1^n int_j-1^j expleft(-frac j^2sigma^2right)diff x \
    &leqslant sum_1^n int_j-1^j expleft(-frac x^2sigma^2right) diff x \
    &=sigma int_0^n expleft(-frac x^2sigma^2right) diff left(frac x sigma right)\
    &= sigma int_0^n/sigma exp(-x^2)diff x\
    &leqslant sigma int_0^+inftyexp(-x^2)diff x\
    &= frac sigma 2 sqrt pi
    endalign*






    share|cite|improve this answer












    Alternative:



    Since $f(x) = exp(-x^2/sigma^2) searrow 0$, we can write
    $
    DeclareMathOperatordiff,d!
    $
    beginalign*
    &sum_1^n expleft(-frac j^2sigma^2right) \
    &= sum_1^n int_j-1^j expleft(-frac j^2sigma^2right)diff x \
    &leqslant sum_1^n int_j-1^j expleft(-frac x^2sigma^2right) diff x \
    &=sigma int_0^n expleft(-frac x^2sigma^2right) diff left(frac x sigma right)\
    &= sigma int_0^n/sigma exp(-x^2)diff x\
    &leqslant sigma int_0^+inftyexp(-x^2)diff x\
    &= frac sigma 2 sqrt pi
    endalign*







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 2 hours ago









    xbh

    3,575320




    3,575320







    • 1




      Nicely done! Sometimes simplest is best.
      – Jacob Manaker
      1 hour ago












    • 1




      Nicely done! Sometimes simplest is best.
      – Jacob Manaker
      1 hour ago







    1




    1




    Nicely done! Sometimes simplest is best.
    – Jacob Manaker
    1 hour ago




    Nicely done! Sometimes simplest is best.
    – Jacob Manaker
    1 hour ago










    up vote
    3
    down vote













    TL;DR: three relatively easy bounds are the numbered equations below.



    You cannot directly apply the formula for the geometric series for the reason mentioned in your edit. But note that $igeq1$, so we have $$sum_i=1^nexpleft(-fraci^2sigma^2right)leqsum_i=1^nexpleft(-fracicdot1sigma^2right)$$ The latter, of course, is a geometric sum. Taking the sum over all $i$ (including $i=0$), we get $$(1-e^-sigma^-2)^-1 tag1 labeleqn:first$$ The calculation for finitely many terms isn't much harder, and only differs by an exponentially decreasing factor.



    If this isn't a strong enough bound, there are other techniques. If $n<sigma$, then we can get very far elementarily. Note that $e^xgeq x+1$; dividing each side, we get $$e^-xleq(1+x)^-1=sum_k=0^infty(-x)^k$$ if $|x|<1$. Taking $x=left(fracisigmaright)^2$, we thus obtain beginalign*
    sum_i=1^ne^-fraci^2sigma^2&leqsum_i=1^nsum_k=0^inftyleft(-left(fracisigmaright)^2right)^k \
    &=sum_k=0^infty(-1)^ksum_i=1^nleft(fracisigmaright)^2k tag* labeleqn:star
    endalign*



    (We can interchange sums because one is finite.) Now, for all $k$, the function $left(fraccdotsigmaright)^2k$ is increasing on $[0,infty)$; we thus have $$int_0^nleft(fracisigmaright)^2k,dileqsum_i=1^nleft(fracisigmaright)^2kleqleft(fracnsigmaright)^2k+int_1^nleft(fracisigmaright)^2k,di$$ Evaluating the integrals and simplifying, we have $$0leqsum_i=1^nleft(fracisigmaright)^2k-fracn2k+1left(fracnsigmaright)^2kleqleft(fracnsigmaright)^2kleft(1-frac1(2k+1)n^2kright)$$



    Substituting into $eqrefeqn:star$, we get beginalign*
    sum_i=1^ne^-fraci^2sigma^2&leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2left(1-frac1(4j+3)n^4j+2right) \
    &leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2 \
    &=sigmatan^-1left(fracnsigmaright)-fracleft(fracnsigmaright)^21-left(fracnsigmaright)^4hspace4em(n<sigma) tag2
    endalign*



    Finally, for the general case we can achieve a slight improvement on $eqrefeqn:first$ via the theory of majorization. $x_i_i=1^nmapstosum_i=1^nexpleft(-fracx_isigma^2right)$ is convex and symmetric in its arguments, hence Schur-convex. Let $b_i=i^2$ and $a_i=left(frac2n-13right)i$. Clearly, for all $mleq n$, we have $$sum_i=1^ma_i=fracm(m-1)2cdotfrac2n-13geqfracm(m-1)(2m-1)6=sum_i=1^mb_i$$ with equality if $m=n$. Thus $veca$ majorizes $vecb$, so beginalign*
    sum_i=1^nexpleft(-fraci^2sigma^2right)&=sum_i=1^nexpleft(-fracb_isigma^2right) \
    &leqsum_i=1^nexpleft(-fraca_isigma^2right) \
    &=sum_i=1^nexpleft(-frac(2n-1)i3sigma^2right) \
    &leqsum_i=0^inftyexpleft(-frac(2n-1)i3sigma^2right) \
    &leqleft(1-expleft(frac2n-13sigma^2right)right)^-1 tag3
    endalign*






    share|cite|improve this answer


























      up vote
      3
      down vote













      TL;DR: three relatively easy bounds are the numbered equations below.



      You cannot directly apply the formula for the geometric series for the reason mentioned in your edit. But note that $igeq1$, so we have $$sum_i=1^nexpleft(-fraci^2sigma^2right)leqsum_i=1^nexpleft(-fracicdot1sigma^2right)$$ The latter, of course, is a geometric sum. Taking the sum over all $i$ (including $i=0$), we get $$(1-e^-sigma^-2)^-1 tag1 labeleqn:first$$ The calculation for finitely many terms isn't much harder, and only differs by an exponentially decreasing factor.



      If this isn't a strong enough bound, there are other techniques. If $n<sigma$, then we can get very far elementarily. Note that $e^xgeq x+1$; dividing each side, we get $$e^-xleq(1+x)^-1=sum_k=0^infty(-x)^k$$ if $|x|<1$. Taking $x=left(fracisigmaright)^2$, we thus obtain beginalign*
      sum_i=1^ne^-fraci^2sigma^2&leqsum_i=1^nsum_k=0^inftyleft(-left(fracisigmaright)^2right)^k \
      &=sum_k=0^infty(-1)^ksum_i=1^nleft(fracisigmaright)^2k tag* labeleqn:star
      endalign*



      (We can interchange sums because one is finite.) Now, for all $k$, the function $left(fraccdotsigmaright)^2k$ is increasing on $[0,infty)$; we thus have $$int_0^nleft(fracisigmaright)^2k,dileqsum_i=1^nleft(fracisigmaright)^2kleqleft(fracnsigmaright)^2k+int_1^nleft(fracisigmaright)^2k,di$$ Evaluating the integrals and simplifying, we have $$0leqsum_i=1^nleft(fracisigmaright)^2k-fracn2k+1left(fracnsigmaright)^2kleqleft(fracnsigmaright)^2kleft(1-frac1(2k+1)n^2kright)$$



      Substituting into $eqrefeqn:star$, we get beginalign*
      sum_i=1^ne^-fraci^2sigma^2&leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2left(1-frac1(4j+3)n^4j+2right) \
      &leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2 \
      &=sigmatan^-1left(fracnsigmaright)-fracleft(fracnsigmaright)^21-left(fracnsigmaright)^4hspace4em(n<sigma) tag2
      endalign*



      Finally, for the general case we can achieve a slight improvement on $eqrefeqn:first$ via the theory of majorization. $x_i_i=1^nmapstosum_i=1^nexpleft(-fracx_isigma^2right)$ is convex and symmetric in its arguments, hence Schur-convex. Let $b_i=i^2$ and $a_i=left(frac2n-13right)i$. Clearly, for all $mleq n$, we have $$sum_i=1^ma_i=fracm(m-1)2cdotfrac2n-13geqfracm(m-1)(2m-1)6=sum_i=1^mb_i$$ with equality if $m=n$. Thus $veca$ majorizes $vecb$, so beginalign*
      sum_i=1^nexpleft(-fraci^2sigma^2right)&=sum_i=1^nexpleft(-fracb_isigma^2right) \
      &leqsum_i=1^nexpleft(-fraca_isigma^2right) \
      &=sum_i=1^nexpleft(-frac(2n-1)i3sigma^2right) \
      &leqsum_i=0^inftyexpleft(-frac(2n-1)i3sigma^2right) \
      &leqleft(1-expleft(frac2n-13sigma^2right)right)^-1 tag3
      endalign*






      share|cite|improve this answer
























        up vote
        3
        down vote










        up vote
        3
        down vote









        TL;DR: three relatively easy bounds are the numbered equations below.



        You cannot directly apply the formula for the geometric series for the reason mentioned in your edit. But note that $igeq1$, so we have $$sum_i=1^nexpleft(-fraci^2sigma^2right)leqsum_i=1^nexpleft(-fracicdot1sigma^2right)$$ The latter, of course, is a geometric sum. Taking the sum over all $i$ (including $i=0$), we get $$(1-e^-sigma^-2)^-1 tag1 labeleqn:first$$ The calculation for finitely many terms isn't much harder, and only differs by an exponentially decreasing factor.



        If this isn't a strong enough bound, there are other techniques. If $n<sigma$, then we can get very far elementarily. Note that $e^xgeq x+1$; dividing each side, we get $$e^-xleq(1+x)^-1=sum_k=0^infty(-x)^k$$ if $|x|<1$. Taking $x=left(fracisigmaright)^2$, we thus obtain beginalign*
        sum_i=1^ne^-fraci^2sigma^2&leqsum_i=1^nsum_k=0^inftyleft(-left(fracisigmaright)^2right)^k \
        &=sum_k=0^infty(-1)^ksum_i=1^nleft(fracisigmaright)^2k tag* labeleqn:star
        endalign*



        (We can interchange sums because one is finite.) Now, for all $k$, the function $left(fraccdotsigmaright)^2k$ is increasing on $[0,infty)$; we thus have $$int_0^nleft(fracisigmaright)^2k,dileqsum_i=1^nleft(fracisigmaright)^2kleqleft(fracnsigmaright)^2k+int_1^nleft(fracisigmaright)^2k,di$$ Evaluating the integrals and simplifying, we have $$0leqsum_i=1^nleft(fracisigmaright)^2k-fracn2k+1left(fracnsigmaright)^2kleqleft(fracnsigmaright)^2kleft(1-frac1(2k+1)n^2kright)$$



        Substituting into $eqrefeqn:star$, we get beginalign*
        sum_i=1^ne^-fraci^2sigma^2&leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2left(1-frac1(4j+3)n^4j+2right) \
        &leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2 \
        &=sigmatan^-1left(fracnsigmaright)-fracleft(fracnsigmaright)^21-left(fracnsigmaright)^4hspace4em(n<sigma) tag2
        endalign*



        Finally, for the general case we can achieve a slight improvement on $eqrefeqn:first$ via the theory of majorization. $x_i_i=1^nmapstosum_i=1^nexpleft(-fracx_isigma^2right)$ is convex and symmetric in its arguments, hence Schur-convex. Let $b_i=i^2$ and $a_i=left(frac2n-13right)i$. Clearly, for all $mleq n$, we have $$sum_i=1^ma_i=fracm(m-1)2cdotfrac2n-13geqfracm(m-1)(2m-1)6=sum_i=1^mb_i$$ with equality if $m=n$. Thus $veca$ majorizes $vecb$, so beginalign*
        sum_i=1^nexpleft(-fraci^2sigma^2right)&=sum_i=1^nexpleft(-fracb_isigma^2right) \
        &leqsum_i=1^nexpleft(-fraca_isigma^2right) \
        &=sum_i=1^nexpleft(-frac(2n-1)i3sigma^2right) \
        &leqsum_i=0^inftyexpleft(-frac(2n-1)i3sigma^2right) \
        &leqleft(1-expleft(frac2n-13sigma^2right)right)^-1 tag3
        endalign*






        share|cite|improve this answer














        TL;DR: three relatively easy bounds are the numbered equations below.



        You cannot directly apply the formula for the geometric series for the reason mentioned in your edit. But note that $igeq1$, so we have $$sum_i=1^nexpleft(-fraci^2sigma^2right)leqsum_i=1^nexpleft(-fracicdot1sigma^2right)$$ The latter, of course, is a geometric sum. Taking the sum over all $i$ (including $i=0$), we get $$(1-e^-sigma^-2)^-1 tag1 labeleqn:first$$ The calculation for finitely many terms isn't much harder, and only differs by an exponentially decreasing factor.



        If this isn't a strong enough bound, there are other techniques. If $n<sigma$, then we can get very far elementarily. Note that $e^xgeq x+1$; dividing each side, we get $$e^-xleq(1+x)^-1=sum_k=0^infty(-x)^k$$ if $|x|<1$. Taking $x=left(fracisigmaright)^2$, we thus obtain beginalign*
        sum_i=1^ne^-fraci^2sigma^2&leqsum_i=1^nsum_k=0^inftyleft(-left(fracisigmaright)^2right)^k \
        &=sum_k=0^infty(-1)^ksum_i=1^nleft(fracisigmaright)^2k tag* labeleqn:star
        endalign*



        (We can interchange sums because one is finite.) Now, for all $k$, the function $left(fraccdotsigmaright)^2k$ is increasing on $[0,infty)$; we thus have $$int_0^nleft(fracisigmaright)^2k,dileqsum_i=1^nleft(fracisigmaright)^2kleqleft(fracnsigmaright)^2k+int_1^nleft(fracisigmaright)^2k,di$$ Evaluating the integrals and simplifying, we have $$0leqsum_i=1^nleft(fracisigmaright)^2k-fracn2k+1left(fracnsigmaright)^2kleqleft(fracnsigmaright)^2kleft(1-frac1(2k+1)n^2kright)$$



        Substituting into $eqrefeqn:star$, we get beginalign*
        sum_i=1^ne^-fraci^2sigma^2&leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2left(1-frac1(4j+3)n^4j+2right) \
        &leqsum_k=0^inftyfrac(-1)^kn2k+1left(fracnsigmaright)^2k-sum_j=0^inftyleft(fracnsigmaright)^4j+2 \
        &=sigmatan^-1left(fracnsigmaright)-fracleft(fracnsigmaright)^21-left(fracnsigmaright)^4hspace4em(n<sigma) tag2
        endalign*



        Finally, for the general case we can achieve a slight improvement on $eqrefeqn:first$ via the theory of majorization. $x_i_i=1^nmapstosum_i=1^nexpleft(-fracx_isigma^2right)$ is convex and symmetric in its arguments, hence Schur-convex. Let $b_i=i^2$ and $a_i=left(frac2n-13right)i$. Clearly, for all $mleq n$, we have $$sum_i=1^ma_i=fracm(m-1)2cdotfrac2n-13geqfracm(m-1)(2m-1)6=sum_i=1^mb_i$$ with equality if $m=n$. Thus $veca$ majorizes $vecb$, so beginalign*
        sum_i=1^nexpleft(-fraci^2sigma^2right)&=sum_i=1^nexpleft(-fracb_isigma^2right) \
        &leqsum_i=1^nexpleft(-fraca_isigma^2right) \
        &=sum_i=1^nexpleft(-frac(2n-1)i3sigma^2right) \
        &leqsum_i=0^inftyexpleft(-frac(2n-1)i3sigma^2right) \
        &leqleft(1-expleft(frac2n-13sigma^2right)right)^-1 tag3
        endalign*







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 1 hour ago

























        answered 3 hours ago









        Jacob Manaker

        982413




        982413



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2921700%2fsimplify-or-upper-bound-this-summation%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            Long meetings (6-7 hours a day): Being “babysat” by supervisor

            Is the Concept of Multiple Fantasy Races Scientifically Flawed? [closed]

            Confectionery