Integral going to zero

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












The question is:



Let
beginalign*
varphi(x) =
begincases
1, & 0 < x < 1/2,\
0, & 1/2 < x < 1,
endcases
endalign*

be a $1$-periodic function, and define $varphi_n(x) = varphi(nx)$. Show that
beginalign*
int_a^b left[varphi_n(x) - 1/2right]dx rightarrow 0, quad text as quad n rightarrow infty,
endalign*

for any interval $(a, b)$.



I'm having a hard time showing this. Any suggestions?










share|cite|improve this question























  • What if $x=frac12$?
    – cansomeonehelpmeout
    38 mins ago










  • The value of at $x=frac12$ does not matter for the integral.
    – GurrVasa
    34 mins ago














up vote
3
down vote

favorite












The question is:



Let
beginalign*
varphi(x) =
begincases
1, & 0 < x < 1/2,\
0, & 1/2 < x < 1,
endcases
endalign*

be a $1$-periodic function, and define $varphi_n(x) = varphi(nx)$. Show that
beginalign*
int_a^b left[varphi_n(x) - 1/2right]dx rightarrow 0, quad text as quad n rightarrow infty,
endalign*

for any interval $(a, b)$.



I'm having a hard time showing this. Any suggestions?










share|cite|improve this question























  • What if $x=frac12$?
    – cansomeonehelpmeout
    38 mins ago










  • The value of at $x=frac12$ does not matter for the integral.
    – GurrVasa
    34 mins ago












up vote
3
down vote

favorite









up vote
3
down vote

favorite











The question is:



Let
beginalign*
varphi(x) =
begincases
1, & 0 < x < 1/2,\
0, & 1/2 < x < 1,
endcases
endalign*

be a $1$-periodic function, and define $varphi_n(x) = varphi(nx)$. Show that
beginalign*
int_a^b left[varphi_n(x) - 1/2right]dx rightarrow 0, quad text as quad n rightarrow infty,
endalign*

for any interval $(a, b)$.



I'm having a hard time showing this. Any suggestions?










share|cite|improve this question















The question is:



Let
beginalign*
varphi(x) =
begincases
1, & 0 < x < 1/2,\
0, & 1/2 < x < 1,
endcases
endalign*

be a $1$-periodic function, and define $varphi_n(x) = varphi(nx)$. Show that
beginalign*
int_a^b left[varphi_n(x) - 1/2right]dx rightarrow 0, quad text as quad n rightarrow infty,
endalign*

for any interval $(a, b)$.



I'm having a hard time showing this. Any suggestions?







real-analysis analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 44 mins ago

























asked 49 mins ago









GurrVasa

795




795











  • What if $x=frac12$?
    – cansomeonehelpmeout
    38 mins ago










  • The value of at $x=frac12$ does not matter for the integral.
    – GurrVasa
    34 mins ago
















  • What if $x=frac12$?
    – cansomeonehelpmeout
    38 mins ago










  • The value of at $x=frac12$ does not matter for the integral.
    – GurrVasa
    34 mins ago















What if $x=frac12$?
– cansomeonehelpmeout
38 mins ago




What if $x=frac12$?
– cansomeonehelpmeout
38 mins ago












The value of at $x=frac12$ does not matter for the integral.
– GurrVasa
34 mins ago




The value of at $x=frac12$ does not matter for the integral.
– GurrVasa
34 mins ago










1 Answer
1






active

oldest

votes

















up vote
4
down vote



accepted










Hint. Note that for any real $a$
$$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
Therefore, for $n>0$, after letting $t=nx$, we have that
$$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$






share|cite|improve this answer






















    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981693%2fintegral-going-to-zero%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    4
    down vote



    accepted










    Hint. Note that for any real $a$
    $$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
    Therefore, for $n>0$, after letting $t=nx$, we have that
    $$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
    frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$






    share|cite|improve this answer


























      up vote
      4
      down vote



      accepted










      Hint. Note that for any real $a$
      $$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
      Therefore, for $n>0$, after letting $t=nx$, we have that
      $$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
      frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$






      share|cite|improve this answer
























        up vote
        4
        down vote



        accepted







        up vote
        4
        down vote



        accepted






        Hint. Note that for any real $a$
        $$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
        Therefore, for $n>0$, after letting $t=nx$, we have that
        $$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
        frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$






        share|cite|improve this answer














        Hint. Note that for any real $a$
        $$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
        Therefore, for $n>0$, after letting $t=nx$, we have that
        $$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
        frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 23 mins ago

























        answered 32 mins ago









        Robert Z

        88.1k1056127




        88.1k1056127



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981693%2fintegral-going-to-zero%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What does second last employer means? [closed]

            Installing NextGIS Connect into QGIS 3?

            One-line joke