Integral going to zero
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
The question is:
Let
beginalign*
varphi(x) =
begincases
1, & 0 < x < 1/2,\
0, & 1/2 < x < 1,
endcases
endalign*
be a $1$-periodic function, and define $varphi_n(x) = varphi(nx)$. Show that
beginalign*
int_a^b left[varphi_n(x) - 1/2right]dx rightarrow 0, quad text as quad n rightarrow infty,
endalign*
for any interval $(a, b)$.
I'm having a hard time showing this. Any suggestions?
real-analysis analysis
add a comment |Â
up vote
3
down vote
favorite
The question is:
Let
beginalign*
varphi(x) =
begincases
1, & 0 < x < 1/2,\
0, & 1/2 < x < 1,
endcases
endalign*
be a $1$-periodic function, and define $varphi_n(x) = varphi(nx)$. Show that
beginalign*
int_a^b left[varphi_n(x) - 1/2right]dx rightarrow 0, quad text as quad n rightarrow infty,
endalign*
for any interval $(a, b)$.
I'm having a hard time showing this. Any suggestions?
real-analysis analysis
What if $x=frac12$?
â cansomeonehelpmeout
38 mins ago
The value of at $x=frac12$ does not matter for the integral.
â GurrVasa
34 mins ago
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
The question is:
Let
beginalign*
varphi(x) =
begincases
1, & 0 < x < 1/2,\
0, & 1/2 < x < 1,
endcases
endalign*
be a $1$-periodic function, and define $varphi_n(x) = varphi(nx)$. Show that
beginalign*
int_a^b left[varphi_n(x) - 1/2right]dx rightarrow 0, quad text as quad n rightarrow infty,
endalign*
for any interval $(a, b)$.
I'm having a hard time showing this. Any suggestions?
real-analysis analysis
The question is:
Let
beginalign*
varphi(x) =
begincases
1, & 0 < x < 1/2,\
0, & 1/2 < x < 1,
endcases
endalign*
be a $1$-periodic function, and define $varphi_n(x) = varphi(nx)$. Show that
beginalign*
int_a^b left[varphi_n(x) - 1/2right]dx rightarrow 0, quad text as quad n rightarrow infty,
endalign*
for any interval $(a, b)$.
I'm having a hard time showing this. Any suggestions?
real-analysis analysis
real-analysis analysis
edited 44 mins ago
asked 49 mins ago
GurrVasa
795
795
What if $x=frac12$?
â cansomeonehelpmeout
38 mins ago
The value of at $x=frac12$ does not matter for the integral.
â GurrVasa
34 mins ago
add a comment |Â
What if $x=frac12$?
â cansomeonehelpmeout
38 mins ago
The value of at $x=frac12$ does not matter for the integral.
â GurrVasa
34 mins ago
What if $x=frac12$?
â cansomeonehelpmeout
38 mins ago
What if $x=frac12$?
â cansomeonehelpmeout
38 mins ago
The value of at $x=frac12$ does not matter for the integral.
â GurrVasa
34 mins ago
The value of at $x=frac12$ does not matter for the integral.
â GurrVasa
34 mins ago
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
4
down vote
accepted
Hint. Note that for any real $a$
$$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
Therefore, for $n>0$, after letting $t=nx$, we have that
$$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Hint. Note that for any real $a$
$$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
Therefore, for $n>0$, after letting $t=nx$, we have that
$$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$
add a comment |Â
up vote
4
down vote
accepted
Hint. Note that for any real $a$
$$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
Therefore, for $n>0$, after letting $t=nx$, we have that
$$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Hint. Note that for any real $a$
$$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
Therefore, for $n>0$, after letting $t=nx$, we have that
$$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$
Hint. Note that for any real $a$
$$int_a^a+1 left[varphi(x) - 1/2right] dx=0.$$
Therefore, for $n>0$, after letting $t=nx$, we have that
$$left|int_a^b left[varphi_n(x) - 1/2right] dxright|=frac1nleft|int_na^nb left[varphi(t) - 1/2right]dtright|leq
frac1nint_0^1 left|varphi(t) - 1/2right|dt.$$
edited 23 mins ago
answered 32 mins ago
Robert Z
88.1k1056127
88.1k1056127
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2981693%2fintegral-going-to-zero%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What if $x=frac12$?
â cansomeonehelpmeout
38 mins ago
The value of at $x=frac12$ does not matter for the integral.
â GurrVasa
34 mins ago