Use of the term âwheneverâ in Logic
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
How does the word "whenever" translate into logic? For instance:
$|f(x) - f(1)| geq epsilon$ whenever $|x-1| geq delta$
logic terminology logic-translation
add a comment |Â
up vote
1
down vote
favorite
How does the word "whenever" translate into logic? For instance:
$|f(x) - f(1)| geq epsilon$ whenever $|x-1| geq delta$
logic terminology logic-translation
1
It means 'if'. So you can also read the statement as: If $|x-1|geqdelta$, then $|f(x)-f(1)|geqepsilon$. But it is nice to sometimes rephrase this to avoid repetition
â Stan Tendijck
1 hour ago
1
See my answer here.
â Taroccoesbrocco
56 mins ago
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
How does the word "whenever" translate into logic? For instance:
$|f(x) - f(1)| geq epsilon$ whenever $|x-1| geq delta$
logic terminology logic-translation
How does the word "whenever" translate into logic? For instance:
$|f(x) - f(1)| geq epsilon$ whenever $|x-1| geq delta$
logic terminology logic-translation
logic terminology logic-translation
edited 19 mins ago
Taroccoesbrocco
4,35461535
4,35461535
asked 1 hour ago
yoshi
1,018816
1,018816
1
It means 'if'. So you can also read the statement as: If $|x-1|geqdelta$, then $|f(x)-f(1)|geqepsilon$. But it is nice to sometimes rephrase this to avoid repetition
â Stan Tendijck
1 hour ago
1
See my answer here.
â Taroccoesbrocco
56 mins ago
add a comment |Â
1
It means 'if'. So you can also read the statement as: If $|x-1|geqdelta$, then $|f(x)-f(1)|geqepsilon$. But it is nice to sometimes rephrase this to avoid repetition
â Stan Tendijck
1 hour ago
1
See my answer here.
â Taroccoesbrocco
56 mins ago
1
1
It means 'if'. So you can also read the statement as: If $|x-1|geqdelta$, then $|f(x)-f(1)|geqepsilon$. But it is nice to sometimes rephrase this to avoid repetition
â Stan Tendijck
1 hour ago
It means 'if'. So you can also read the statement as: If $|x-1|geqdelta$, then $|f(x)-f(1)|geqepsilon$. But it is nice to sometimes rephrase this to avoid repetition
â Stan Tendijck
1 hour ago
1
1
See my answer here.
â Taroccoesbrocco
56 mins ago
See my answer here.
â Taroccoesbrocco
56 mins ago
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
4
down vote
Whenever in this instant is used as the following :
$$textIfquad |x-1|geq delta quad textthen quad |f(x)-f(1)| geq epsilon $$
New contributor
add a comment |Â
up vote
3
down vote
"Whenever" can be a English representation of $Leftarrow$ or "is implied by".
The whole statement $|f(x) - f(1)| geq epsilon$ whenver $|x-1| geq delta$ is true when $|f(x) - f(1)| geq epsilon$ and $|x-1| geq delta$ are both true, or $|x-1| geq delta$ is false.
so: $|f(x) - f(1)| geq epsilon Leftarrow |x-1| geq delta$
add a comment |Â
up vote
1
down vote
$forall xbig[|x-1| geq delta rightarrow |f(x) - f(1)| geq epsilonbig]$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
Whenever in this instant is used as the following :
$$textIfquad |x-1|geq delta quad textthen quad |f(x)-f(1)| geq epsilon $$
New contributor
add a comment |Â
up vote
4
down vote
Whenever in this instant is used as the following :
$$textIfquad |x-1|geq delta quad textthen quad |f(x)-f(1)| geq epsilon $$
New contributor
add a comment |Â
up vote
4
down vote
up vote
4
down vote
Whenever in this instant is used as the following :
$$textIfquad |x-1|geq delta quad textthen quad |f(x)-f(1)| geq epsilon $$
New contributor
Whenever in this instant is used as the following :
$$textIfquad |x-1|geq delta quad textthen quad |f(x)-f(1)| geq epsilon $$
New contributor
New contributor
answered 1 hour ago
TheJedi
464
464
New contributor
New contributor
add a comment |Â
add a comment |Â
up vote
3
down vote
"Whenever" can be a English representation of $Leftarrow$ or "is implied by".
The whole statement $|f(x) - f(1)| geq epsilon$ whenver $|x-1| geq delta$ is true when $|f(x) - f(1)| geq epsilon$ and $|x-1| geq delta$ are both true, or $|x-1| geq delta$ is false.
so: $|f(x) - f(1)| geq epsilon Leftarrow |x-1| geq delta$
add a comment |Â
up vote
3
down vote
"Whenever" can be a English representation of $Leftarrow$ or "is implied by".
The whole statement $|f(x) - f(1)| geq epsilon$ whenver $|x-1| geq delta$ is true when $|f(x) - f(1)| geq epsilon$ and $|x-1| geq delta$ are both true, or $|x-1| geq delta$ is false.
so: $|f(x) - f(1)| geq epsilon Leftarrow |x-1| geq delta$
add a comment |Â
up vote
3
down vote
up vote
3
down vote
"Whenever" can be a English representation of $Leftarrow$ or "is implied by".
The whole statement $|f(x) - f(1)| geq epsilon$ whenver $|x-1| geq delta$ is true when $|f(x) - f(1)| geq epsilon$ and $|x-1| geq delta$ are both true, or $|x-1| geq delta$ is false.
so: $|f(x) - f(1)| geq epsilon Leftarrow |x-1| geq delta$
"Whenever" can be a English representation of $Leftarrow$ or "is implied by".
The whole statement $|f(x) - f(1)| geq epsilon$ whenver $|x-1| geq delta$ is true when $|f(x) - f(1)| geq epsilon$ and $|x-1| geq delta$ are both true, or $|x-1| geq delta$ is false.
so: $|f(x) - f(1)| geq epsilon Leftarrow |x-1| geq delta$
answered 1 hour ago
James K
512212
512212
add a comment |Â
add a comment |Â
up vote
1
down vote
$forall xbig[|x-1| geq delta rightarrow |f(x) - f(1)| geq epsilonbig]$
add a comment |Â
up vote
1
down vote
$forall xbig[|x-1| geq delta rightarrow |f(x) - f(1)| geq epsilonbig]$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$forall xbig[|x-1| geq delta rightarrow |f(x) - f(1)| geq epsilonbig]$
$forall xbig[|x-1| geq delta rightarrow |f(x) - f(1)| geq epsilonbig]$
answered 58 mins ago
S.S.Danyal
1413
1413
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2937156%2fuse-of-the-term-whenever-in-logic%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
It means 'if'. So you can also read the statement as: If $|x-1|geqdelta$, then $|f(x)-f(1)|geqepsilon$. But it is nice to sometimes rephrase this to avoid repetition
â Stan Tendijck
1 hour ago
1
See my answer here.
â Taroccoesbrocco
56 mins ago