I want to find the limit of a specific function
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
$$lim_xrightarrow 0+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta$$
where $ alpha>0 $ and $ beta>0 $ are given constants
calculus
New contributor
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |Â
up vote
2
down vote
favorite
$$lim_xrightarrow 0+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta$$
where $ alpha>0 $ and $ beta>0 $ are given constants
calculus
New contributor
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
$$lim_xrightarrow 0+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta$$
where $ alpha>0 $ and $ beta>0 $ are given constants
calculus
New contributor
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$$lim_xrightarrow 0+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta$$
where $ alpha>0 $ and $ beta>0 $ are given constants
calculus
calculus
New contributor
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
edited 3 hours ago


Parcly Taxel
38.9k137097
38.9k137097
New contributor
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
asked 3 hours ago
Student
111
111
New contributor
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
3
down vote
Let $y=frac1x to infty$ then
$$frace^-alphaleft(frac1x^beta-1right)x^1+beta
=fracy^1+betae^alphaleft(y^beta-1right)
=e^alphacdotfracy^1+betae^alpha y^betato 0$$
indeed eventually
$$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$
but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
– hamza boulahia
3 hours ago
@hamzaboulahia Opsss....thanks I fix!
– gimusi
3 hours ago
add a comment |Â
up vote
2
down vote
Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
$$
exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
$$ giving, as $x to 0^+$,
$$
left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
$$
add a comment |Â
up vote
2
down vote
We have,
$$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
Then we substitute $dfrac1x=u$, then
$$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
$$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Let $y=frac1x to infty$ then
$$frace^-alphaleft(frac1x^beta-1right)x^1+beta
=fracy^1+betae^alphaleft(y^beta-1right)
=e^alphacdotfracy^1+betae^alpha y^betato 0$$
indeed eventually
$$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$
but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
– hamza boulahia
3 hours ago
@hamzaboulahia Opsss....thanks I fix!
– gimusi
3 hours ago
add a comment |Â
up vote
3
down vote
Let $y=frac1x to infty$ then
$$frace^-alphaleft(frac1x^beta-1right)x^1+beta
=fracy^1+betae^alphaleft(y^beta-1right)
=e^alphacdotfracy^1+betae^alpha y^betato 0$$
indeed eventually
$$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$
but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
– hamza boulahia
3 hours ago
@hamzaboulahia Opsss....thanks I fix!
– gimusi
3 hours ago
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Let $y=frac1x to infty$ then
$$frace^-alphaleft(frac1x^beta-1right)x^1+beta
=fracy^1+betae^alphaleft(y^beta-1right)
=e^alphacdotfracy^1+betae^alpha y^betato 0$$
indeed eventually
$$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$
Let $y=frac1x to infty$ then
$$frace^-alphaleft(frac1x^beta-1right)x^1+beta
=fracy^1+betae^alphaleft(y^beta-1right)
=e^alphacdotfracy^1+betae^alpha y^betato 0$$
indeed eventually
$$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$
edited 2 hours ago
answered 3 hours ago
gimusi
80.7k74090
80.7k74090
but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
– hamza boulahia
3 hours ago
@hamzaboulahia Opsss....thanks I fix!
– gimusi
3 hours ago
add a comment |Â
but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
– hamza boulahia
3 hours ago
@hamzaboulahia Opsss....thanks I fix!
– gimusi
3 hours ago
but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
– hamza boulahia
3 hours ago
but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
– hamza boulahia
3 hours ago
@hamzaboulahia Opsss....thanks I fix!
– gimusi
3 hours ago
@hamzaboulahia Opsss....thanks I fix!
– gimusi
3 hours ago
add a comment |Â
up vote
2
down vote
Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
$$
exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
$$ giving, as $x to 0^+$,
$$
left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
$$
add a comment |Â
up vote
2
down vote
Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
$$
exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
$$ giving, as $x to 0^+$,
$$
left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
$$
exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
$$ giving, as $x to 0^+$,
$$
left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
$$
Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
$$
exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
$$ giving, as $x to 0^+$,
$$
left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
$$
answered 3 hours ago


Olivier Oloa
107k17175293
107k17175293
add a comment |Â
add a comment |Â
up vote
2
down vote
We have,
$$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
Then we substitute $dfrac1x=u$, then
$$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
$$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$
add a comment |Â
up vote
2
down vote
We have,
$$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
Then we substitute $dfrac1x=u$, then
$$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
$$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
We have,
$$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
Then we substitute $dfrac1x=u$, then
$$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
$$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$
We have,
$$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
Then we substitute $dfrac1x=u$, then
$$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
$$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$
answered 3 hours ago


hamza boulahia
819316
819316
add a comment |Â
add a comment |Â
Student is a new contributor. Be nice, and check out our Code of Conduct.
Student is a new contributor. Be nice, and check out our Code of Conduct.
Student is a new contributor. Be nice, and check out our Code of Conduct.
Student is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2980260%2fi-want-to-find-the-limit-of-a-specific-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password