I want to find the limit of a specific function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite












$$lim_xrightarrow 0+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta$$
where $ alpha>0 $ and $ beta>0 $ are given constants










share|cite|improve this question









New contributor




Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.























    up vote
    2
    down vote

    favorite












    $$lim_xrightarrow 0+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta$$
    where $ alpha>0 $ and $ beta>0 $ are given constants










    share|cite|improve this question









    New contributor




    Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





















      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      $$lim_xrightarrow 0+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta$$
      where $ alpha>0 $ and $ beta>0 $ are given constants










      share|cite|improve this question









      New contributor




      Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      $$lim_xrightarrow 0+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta$$
      where $ alpha>0 $ and $ beta>0 $ are given constants







      calculus






      share|cite|improve this question









      New contributor




      Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 3 hours ago









      Parcly Taxel

      38.9k137097




      38.9k137097






      New contributor




      Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 3 hours ago









      Student

      111




      111




      New contributor




      Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          3
          down vote













          Let $y=frac1x to infty$ then



          $$frace^-alphaleft(frac1x^beta-1right)x^1+beta
          =fracy^1+betae^alphaleft(y^beta-1right)
          =e^alphacdotfracy^1+betae^alpha y^betato 0$$



          indeed eventually



          $$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$






          share|cite|improve this answer






















          • but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
            – hamza boulahia
            3 hours ago











          • @hamzaboulahia Opsss....thanks I fix!
            – gimusi
            3 hours ago

















          up vote
          2
          down vote













          Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
          $$
          exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
          $$
          giving, as $x to 0^+$,
          $$
          left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
          $$






          share|cite|improve this answer



























            up vote
            2
            down vote













            We have,
            $$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
            Then we substitute $dfrac1x=u$, then
            $$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
            We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
            $$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$






            share|cite|improve this answer




















              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              Student is a new contributor. Be nice, and check out our Code of Conduct.









               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2980260%2fi-want-to-find-the-limit-of-a-specific-function%23new-answer', 'question_page');

              );

              Post as a guest






























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              3
              down vote













              Let $y=frac1x to infty$ then



              $$frace^-alphaleft(frac1x^beta-1right)x^1+beta
              =fracy^1+betae^alphaleft(y^beta-1right)
              =e^alphacdotfracy^1+betae^alpha y^betato 0$$



              indeed eventually



              $$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$






              share|cite|improve this answer






















              • but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
                – hamza boulahia
                3 hours ago











              • @hamzaboulahia Opsss....thanks I fix!
                – gimusi
                3 hours ago














              up vote
              3
              down vote













              Let $y=frac1x to infty$ then



              $$frace^-alphaleft(frac1x^beta-1right)x^1+beta
              =fracy^1+betae^alphaleft(y^beta-1right)
              =e^alphacdotfracy^1+betae^alpha y^betato 0$$



              indeed eventually



              $$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$






              share|cite|improve this answer






















              • but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
                – hamza boulahia
                3 hours ago











              • @hamzaboulahia Opsss....thanks I fix!
                – gimusi
                3 hours ago












              up vote
              3
              down vote










              up vote
              3
              down vote









              Let $y=frac1x to infty$ then



              $$frace^-alphaleft(frac1x^beta-1right)x^1+beta
              =fracy^1+betae^alphaleft(y^beta-1right)
              =e^alphacdotfracy^1+betae^alpha y^betato 0$$



              indeed eventually



              $$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$






              share|cite|improve this answer














              Let $y=frac1x to infty$ then



              $$frace^-alphaleft(frac1x^beta-1right)x^1+beta
              =fracy^1+betae^alphaleft(y^beta-1right)
              =e^alphacdotfracy^1+betae^alpha y^betato 0$$



              indeed eventually



              $$e^alpha y^betage y^2+beta implies fracy^1+betae^alpha y^betale fracy^1+betay^2+beta=frac1y to 0$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 2 hours ago

























              answered 3 hours ago









              gimusi

              80.7k74090




              80.7k74090











              • but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
                – hamza boulahia
                3 hours ago











              • @hamzaboulahia Opsss....thanks I fix!
                – gimusi
                3 hours ago
















              • but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
                – hamza boulahia
                3 hours ago











              • @hamzaboulahia Opsss....thanks I fix!
                – gimusi
                3 hours ago















              but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
              – hamza boulahia
              3 hours ago





              but $e^xlongrightarrow 0 $, when $xrightarrow -infty$
              – hamza boulahia
              3 hours ago













              @hamzaboulahia Opsss....thanks I fix!
              – gimusi
              3 hours ago




              @hamzaboulahia Opsss....thanks I fix!
              – gimusi
              3 hours ago










              up vote
              2
              down vote













              Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
              $$
              exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
              $$
              giving, as $x to 0^+$,
              $$
              left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
              $$






              share|cite|improve this answer
























                up vote
                2
                down vote













                Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
                $$
                exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
                $$
                giving, as $x to 0^+$,
                $$
                left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
                $$






                share|cite|improve this answer






















                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
                  $$
                  exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
                  $$
                  giving, as $x to 0^+$,
                  $$
                  left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
                  $$






                  share|cite|improve this answer












                  Hint. We have $alpha>0,,beta>0$ then, for some $c(alpha,beta)>0$,
                  $$
                  exp left(fracalphax^betaright)= sum_n=0^infty fracleft(fracalphax^betaright)^nn!ge fracc(alpha,beta)x^beta+2,qquad x>0,
                  $$
                  giving, as $x to 0^+$,
                  $$
                  left|fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta right|le frace^alphax^beta+2x^beta+1c(alpha,beta)=frace^alphaxc(alpha,beta)to 0.
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 3 hours ago









                  Olivier Oloa

                  107k17175293




                  107k17175293




















                      up vote
                      2
                      down vote













                      We have,
                      $$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
                      Then we substitute $dfrac1x=u$, then
                      $$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
                      We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
                      $$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$






                      share|cite|improve this answer
























                        up vote
                        2
                        down vote













                        We have,
                        $$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
                        Then we substitute $dfrac1x=u$, then
                        $$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
                        We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
                        $$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$






                        share|cite|improve this answer






















                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          We have,
                          $$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
                          Then we substitute $dfrac1x=u$, then
                          $$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
                          We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
                          $$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$






                          share|cite|improve this answer












                          We have,
                          $$lim_xrightarrow 0^+fracexp left[-alphaleft( frac1x^beta -1right) right] x^1+beta=lim_xrightarrow 0+e^alphafrace^ frac-alphax^beta x^1+beta$$
                          Then we substitute $dfrac1x=u$, then
                          $$ lim_xrightarrow 0^+e^alphafrace^ frac-alphax^beta x^1+beta=lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta$$
                          We know that the polynomial functions are negligible in front of the exponential in the vicinity of infinity,
                          $$lim_urightarrow +inftye^alpha e^ -alpha u^beta u^1+beta=lim_urightarrow +infty e^ -alpha u^beta =0,quad mboxsince alpha>0, beta>0 $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 3 hours ago









                          hamza boulahia

                          819316




                          819316




















                              Student is a new contributor. Be nice, and check out our Code of Conduct.









                               

                              draft saved


                              draft discarded


















                              Student is a new contributor. Be nice, and check out our Code of Conduct.












                              Student is a new contributor. Be nice, and check out our Code of Conduct.











                              Student is a new contributor. Be nice, and check out our Code of Conduct.













                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2980260%2fi-want-to-find-the-limit-of-a-specific-function%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What does second last employer means? [closed]

                              List of Gilmore Girls characters

                              Confectionery