How can a node remember it's previous position?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite












Consider the following MWE:



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at (newnumber,current) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


Here is the output:



Screenshot



My question is: How can the green node remeber it's previous position, so that the desired result looks like a dotted green line?










share|improve this question

















  • 1




    This is probably suboptimal, but at each iteration you could do coordinate (greennoden) at (newnumber,current); then put the node in a foreach nn in 2,...,n and use node [...] at (greennodenn) ;... It's not remembering its last position, but you are saving every position and drawing them at each iteration.
    – Phelype Oleinik
    23 mins ago











  • Nice work, you could have started with a hexagon and stopped like Archimedes with a regular 96 side polygon.
    – AndréC
    5 mins ago














up vote
4
down vote

favorite












Consider the following MWE:



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at (newnumber,current) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


Here is the output:



Screenshot



My question is: How can the green node remeber it's previous position, so that the desired result looks like a dotted green line?










share|improve this question

















  • 1




    This is probably suboptimal, but at each iteration you could do coordinate (greennoden) at (newnumber,current); then put the node in a foreach nn in 2,...,n and use node [...] at (greennodenn) ;... It's not remembering its last position, but you are saving every position and drawing them at each iteration.
    – Phelype Oleinik
    23 mins ago











  • Nice work, you could have started with a hexagon and stopped like Archimedes with a regular 96 side polygon.
    – AndréC
    5 mins ago












up vote
4
down vote

favorite









up vote
4
down vote

favorite











Consider the following MWE:



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at (newnumber,current) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


Here is the output:



Screenshot



My question is: How can the green node remeber it's previous position, so that the desired result looks like a dotted green line?










share|improve this question













Consider the following MWE:



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at (newnumber,current) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


Here is the output:



Screenshot



My question is: How can the green node remeber it's previous position, so that the desired result looks like a dotted green line?







tikz-pgf nodes code-review remember






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 31 mins ago









current_user

2,6411428




2,6411428







  • 1




    This is probably suboptimal, but at each iteration you could do coordinate (greennoden) at (newnumber,current); then put the node in a foreach nn in 2,...,n and use node [...] at (greennodenn) ;... It's not remembering its last position, but you are saving every position and drawing them at each iteration.
    – Phelype Oleinik
    23 mins ago











  • Nice work, you could have started with a hexagon and stopped like Archimedes with a regular 96 side polygon.
    – AndréC
    5 mins ago












  • 1




    This is probably suboptimal, but at each iteration you could do coordinate (greennoden) at (newnumber,current); then put the node in a foreach nn in 2,...,n and use node [...] at (greennodenn) ;... It's not remembering its last position, but you are saving every position and drawing them at each iteration.
    – Phelype Oleinik
    23 mins ago











  • Nice work, you could have started with a hexagon and stopped like Archimedes with a regular 96 side polygon.
    – AndréC
    5 mins ago







1




1




This is probably suboptimal, but at each iteration you could do coordinate (greennoden) at (newnumber,current); then put the node in a foreach nn in 2,...,n and use node [...] at (greennodenn) ;... It's not remembering its last position, but you are saving every position and drawing them at each iteration.
– Phelype Oleinik
23 mins ago





This is probably suboptimal, but at each iteration you could do coordinate (greennoden) at (newnumber,current); then put the node in a foreach nn in 2,...,n and use node [...] at (greennodenn) ;... It's not remembering its last position, but you are saving every position and drawing them at each iteration.
– Phelype Oleinik
23 mins ago













Nice work, you could have started with a hexagon and stopped like Archimedes with a regular 96 side polygon.
– AndréC
5 mins ago




Nice work, you could have started with a hexagon and stopped like Archimedes with a regular 96 side polygon.
– AndréC
5 mins ago










1 Answer
1






active

oldest

votes

















up vote
3
down vote













Just build up a list successively.



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
ifnumn=2
xdefLstnewnumber/current
else
xdefLstLst,newnumber/current
fi
foreach X/Y in Lst
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at
(X,Y) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


enter image description here






share|improve this answer




















  • I was just about to propose an uglier version of this ^^
    – BambOo
    15 mins ago










Your Answer







StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "85"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: false,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f454378%2fhow-can-a-node-remember-its-previous-position%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
3
down vote













Just build up a list successively.



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
ifnumn=2
xdefLstnewnumber/current
else
xdefLstLst,newnumber/current
fi
foreach X/Y in Lst
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at
(X,Y) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


enter image description here






share|improve this answer




















  • I was just about to propose an uglier version of this ^^
    – BambOo
    15 mins ago














up vote
3
down vote













Just build up a list successively.



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
ifnumn=2
xdefLstnewnumber/current
else
xdefLstLst,newnumber/current
fi
foreach X/Y in Lst
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at
(X,Y) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


enter image description here






share|improve this answer




















  • I was just about to propose an uglier version of this ^^
    – BambOo
    15 mins ago












up vote
3
down vote










up vote
3
down vote









Just build up a list successively.



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
ifnumn=2
xdefLstnewnumber/current
else
xdefLstLst,newnumber/current
fi
foreach X/Y in Lst
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at
(X,Y) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


enter image description here






share|improve this answer












Just build up a list successively.



documentclass[border=5pt,tikz]standalone
begindocument
foreach n in 2,3,...,20

begintikzpicture
useasboundingbox (-6,-4) rectangle (2,1);
pgfmathsetmacronumber2*n
node at (1.5,.5) $n = pgfmathprintnumbernumber$;
pgfmathsetmacrosamples360/n
pgfmathsetmacrosampleslimit360-samples
pgfmathsetmacropii3.14
pgfmathsetmacrolimit360/samples-1
pgfmathsetmacrocurrent(pii/n)*limit
node[left] at (-1.5,.5) tiny
begintabularlll
$A_mathrmreal$ &=& 3.14 \
$A_mathrmcurrent$ &=& pgfmathprintnumbercurrent
endtabular
;
foreach x in 0,samples,...,sampleslimit

pgfmathsetmacroarcanglesamples/2
fill[red] (x:1) arc(x:x+arcangle:1) -- (0,0) -- cycle;
fill[blue] (x+arcangle:1) arc(x+arcangle:x+2*arcangle:1) -- (0,0) -- cycle;

pgfmathsetmacrolimit360/samples-1
foreach x in 0,1,...,limit

pgfmathsetmacroshiftx*2*sin(samples/4)
pgfmathsetmacrohshiftlimit*sin(samples/4)
fill[xshift=-hshift cm,red,xshift=shift cm,yshift=-1.5cm] (-90-samples/4:1) arc(-90-samples/4:-90+samples/4:1) -- (0,0) -- cycle;
fill[blue,yshift=-1.5cm,xshift=-hshift cm,xshift=shift cm] (-90-samples/4:1) -- (0,0) arc(90-samples/4:90+samples/4:1) -- cycle;

draw[xshift=-6cm,yshift=-4cm,<->] (0,3.5) -- (0,0) -- (4,0);
pgfmathsetmacronewnumbern/5
ifnumn=2
xdefLstnewnumber/current
else
xdefLstLst,newnumber/current
fi
foreach X/Y in Lst
node[xshift=-6cm,yshift=-4cm,fill=green,circle,inner sep=1pt] at
(X,Y) ;
draw[xshift=-6cm,yshift=-4cm,red,dashed] (0,pii) --+ (3.7,0) node[above left] $A_mathrmreal = pi$;
endtikzpicture

enddocument


enter image description here







share|improve this answer












share|improve this answer



share|improve this answer










answered 21 mins ago









marmot

63.8k468137




63.8k468137











  • I was just about to propose an uglier version of this ^^
    – BambOo
    15 mins ago
















  • I was just about to propose an uglier version of this ^^
    – BambOo
    15 mins ago















I was just about to propose an uglier version of this ^^
– BambOo
15 mins ago




I was just about to propose an uglier version of this ^^
– BambOo
15 mins ago

















 

draft saved


draft discarded















































 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f454378%2fhow-can-a-node-remember-its-previous-position%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What does second last employer means? [closed]

List of Gilmore Girls characters

Confectionery