integral kernel function for the SU(N) group

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite
2












It is well know that the Haar probability measure for the $U(N)$ group, given by
$$
beginalign
dX_U(N) & = frac1N!(2pi)^N
beginvmatrix
1 & 1 & cdots & 1 & 1 \
e^ilambda_1 & e^ilambda_2 & cdots & e^ilambda_N-1 & e^ilambda_N \
e^i2lambda_1 & e^i2lambda_2 & cdots & e^i2lambda_N-1 & e^i2lambda_N \
vdots & vdots & ddots & vdots & vdots \
e^i(N-1)lambda_1 & e^i(N-1)lambda_2 & cdots & e^i(N-1)lambda_N-1 & e^i(N-1)lambda_N \
endvmatrix^2 dlambda_1dots dlambda_N \
& = frac1N!(2pi)^N prod_1leq j<kleq N |e^ilambda_j-e^ilambda_k|^2 dlambda_1dots dlambda_N
endalign
$$

can also be expressed as a determinantal point process
$$ dX_U(N) = frac1N!(2pi)^N det_NXN(S_N(lambda_j,lambda_k))_1leq j,kleq N text dlambda_1dots dlambda_N $$
where
$$S_N(x,y)=fracsinfracN(x-y)2sinfracx-y2$$
is the integral kernel function for the $U(N)$ group (a proof of this fact can be found, for example, in section 4.1 of this paper); similar kernels have also been found for the special orthogonal and symplectic groups.



My question is whether any analogous kernel function is know for the $SU(N)$ group ? (or if it can be proved that it doesn't exist).



If such a function $K(x,y)$ exists, it would allow one to express the $SU(N)$ Haar probability measure
$$
beginalign
dX_SU(N) & = frac1N!(2pi)^N-1
beginvmatrix
1 & cdots & 1 & 1 \
e^ilambda_1 & cdots & e^ilambda_N-1 & e^-i(lambda_1+ldots+lambda_N-1) \
e^i2lambda_1 & cdots & e^i2lambda_N-1 & e^-i2(lambda_1+ldots+lambda_N-1) \
vdots & ddots & vdots & vdots \
e^i(N-1)lambda_1 & cdots & e^i(N-1)lambda_N-1 & e^-i(N-1)(lambda_1+ldots+lambda_N-1) \
endvmatrix^2 dlambda_1dots dlambda_N-1 \
& = frac1N!(2pi)^N-1 prod_1leq j<kleq N-1 |e^ilambda_j-e^ilambda_k|^2 prod_1leq jleq N-1 |e^ilambda_j-e^-i(lambda_1+ldots+lambda_N-1)|^2 dlambda_1dots dlambda_N-1 \
endalign
$$

in the form of
$$ dX_SU(N) = frac1N!(2pi)^N-1 det_(N-1)X(N-1)(K(lambda_j,lambda_k))_1leq j,kleq N-1 text dlambda_1dots dlambda_N-1 $$










share|cite|improve this question



























    up vote
    3
    down vote

    favorite
    2












    It is well know that the Haar probability measure for the $U(N)$ group, given by
    $$
    beginalign
    dX_U(N) & = frac1N!(2pi)^N
    beginvmatrix
    1 & 1 & cdots & 1 & 1 \
    e^ilambda_1 & e^ilambda_2 & cdots & e^ilambda_N-1 & e^ilambda_N \
    e^i2lambda_1 & e^i2lambda_2 & cdots & e^i2lambda_N-1 & e^i2lambda_N \
    vdots & vdots & ddots & vdots & vdots \
    e^i(N-1)lambda_1 & e^i(N-1)lambda_2 & cdots & e^i(N-1)lambda_N-1 & e^i(N-1)lambda_N \
    endvmatrix^2 dlambda_1dots dlambda_N \
    & = frac1N!(2pi)^N prod_1leq j<kleq N |e^ilambda_j-e^ilambda_k|^2 dlambda_1dots dlambda_N
    endalign
    $$

    can also be expressed as a determinantal point process
    $$ dX_U(N) = frac1N!(2pi)^N det_NXN(S_N(lambda_j,lambda_k))_1leq j,kleq N text dlambda_1dots dlambda_N $$
    where
    $$S_N(x,y)=fracsinfracN(x-y)2sinfracx-y2$$
    is the integral kernel function for the $U(N)$ group (a proof of this fact can be found, for example, in section 4.1 of this paper); similar kernels have also been found for the special orthogonal and symplectic groups.



    My question is whether any analogous kernel function is know for the $SU(N)$ group ? (or if it can be proved that it doesn't exist).



    If such a function $K(x,y)$ exists, it would allow one to express the $SU(N)$ Haar probability measure
    $$
    beginalign
    dX_SU(N) & = frac1N!(2pi)^N-1
    beginvmatrix
    1 & cdots & 1 & 1 \
    e^ilambda_1 & cdots & e^ilambda_N-1 & e^-i(lambda_1+ldots+lambda_N-1) \
    e^i2lambda_1 & cdots & e^i2lambda_N-1 & e^-i2(lambda_1+ldots+lambda_N-1) \
    vdots & ddots & vdots & vdots \
    e^i(N-1)lambda_1 & cdots & e^i(N-1)lambda_N-1 & e^-i(N-1)(lambda_1+ldots+lambda_N-1) \
    endvmatrix^2 dlambda_1dots dlambda_N-1 \
    & = frac1N!(2pi)^N-1 prod_1leq j<kleq N-1 |e^ilambda_j-e^ilambda_k|^2 prod_1leq jleq N-1 |e^ilambda_j-e^-i(lambda_1+ldots+lambda_N-1)|^2 dlambda_1dots dlambda_N-1 \
    endalign
    $$

    in the form of
    $$ dX_SU(N) = frac1N!(2pi)^N-1 det_(N-1)X(N-1)(K(lambda_j,lambda_k))_1leq j,kleq N-1 text dlambda_1dots dlambda_N-1 $$










    share|cite|improve this question

























      up vote
      3
      down vote

      favorite
      2









      up vote
      3
      down vote

      favorite
      2






      2





      It is well know that the Haar probability measure for the $U(N)$ group, given by
      $$
      beginalign
      dX_U(N) & = frac1N!(2pi)^N
      beginvmatrix
      1 & 1 & cdots & 1 & 1 \
      e^ilambda_1 & e^ilambda_2 & cdots & e^ilambda_N-1 & e^ilambda_N \
      e^i2lambda_1 & e^i2lambda_2 & cdots & e^i2lambda_N-1 & e^i2lambda_N \
      vdots & vdots & ddots & vdots & vdots \
      e^i(N-1)lambda_1 & e^i(N-1)lambda_2 & cdots & e^i(N-1)lambda_N-1 & e^i(N-1)lambda_N \
      endvmatrix^2 dlambda_1dots dlambda_N \
      & = frac1N!(2pi)^N prod_1leq j<kleq N |e^ilambda_j-e^ilambda_k|^2 dlambda_1dots dlambda_N
      endalign
      $$

      can also be expressed as a determinantal point process
      $$ dX_U(N) = frac1N!(2pi)^N det_NXN(S_N(lambda_j,lambda_k))_1leq j,kleq N text dlambda_1dots dlambda_N $$
      where
      $$S_N(x,y)=fracsinfracN(x-y)2sinfracx-y2$$
      is the integral kernel function for the $U(N)$ group (a proof of this fact can be found, for example, in section 4.1 of this paper); similar kernels have also been found for the special orthogonal and symplectic groups.



      My question is whether any analogous kernel function is know for the $SU(N)$ group ? (or if it can be proved that it doesn't exist).



      If such a function $K(x,y)$ exists, it would allow one to express the $SU(N)$ Haar probability measure
      $$
      beginalign
      dX_SU(N) & = frac1N!(2pi)^N-1
      beginvmatrix
      1 & cdots & 1 & 1 \
      e^ilambda_1 & cdots & e^ilambda_N-1 & e^-i(lambda_1+ldots+lambda_N-1) \
      e^i2lambda_1 & cdots & e^i2lambda_N-1 & e^-i2(lambda_1+ldots+lambda_N-1) \
      vdots & ddots & vdots & vdots \
      e^i(N-1)lambda_1 & cdots & e^i(N-1)lambda_N-1 & e^-i(N-1)(lambda_1+ldots+lambda_N-1) \
      endvmatrix^2 dlambda_1dots dlambda_N-1 \
      & = frac1N!(2pi)^N-1 prod_1leq j<kleq N-1 |e^ilambda_j-e^ilambda_k|^2 prod_1leq jleq N-1 |e^ilambda_j-e^-i(lambda_1+ldots+lambda_N-1)|^2 dlambda_1dots dlambda_N-1 \
      endalign
      $$

      in the form of
      $$ dX_SU(N) = frac1N!(2pi)^N-1 det_(N-1)X(N-1)(K(lambda_j,lambda_k))_1leq j,kleq N-1 text dlambda_1dots dlambda_N-1 $$










      share|cite|improve this question















      It is well know that the Haar probability measure for the $U(N)$ group, given by
      $$
      beginalign
      dX_U(N) & = frac1N!(2pi)^N
      beginvmatrix
      1 & 1 & cdots & 1 & 1 \
      e^ilambda_1 & e^ilambda_2 & cdots & e^ilambda_N-1 & e^ilambda_N \
      e^i2lambda_1 & e^i2lambda_2 & cdots & e^i2lambda_N-1 & e^i2lambda_N \
      vdots & vdots & ddots & vdots & vdots \
      e^i(N-1)lambda_1 & e^i(N-1)lambda_2 & cdots & e^i(N-1)lambda_N-1 & e^i(N-1)lambda_N \
      endvmatrix^2 dlambda_1dots dlambda_N \
      & = frac1N!(2pi)^N prod_1leq j<kleq N |e^ilambda_j-e^ilambda_k|^2 dlambda_1dots dlambda_N
      endalign
      $$

      can also be expressed as a determinantal point process
      $$ dX_U(N) = frac1N!(2pi)^N det_NXN(S_N(lambda_j,lambda_k))_1leq j,kleq N text dlambda_1dots dlambda_N $$
      where
      $$S_N(x,y)=fracsinfracN(x-y)2sinfracx-y2$$
      is the integral kernel function for the $U(N)$ group (a proof of this fact can be found, for example, in section 4.1 of this paper); similar kernels have also been found for the special orthogonal and symplectic groups.



      My question is whether any analogous kernel function is know for the $SU(N)$ group ? (or if it can be proved that it doesn't exist).



      If such a function $K(x,y)$ exists, it would allow one to express the $SU(N)$ Haar probability measure
      $$
      beginalign
      dX_SU(N) & = frac1N!(2pi)^N-1
      beginvmatrix
      1 & cdots & 1 & 1 \
      e^ilambda_1 & cdots & e^ilambda_N-1 & e^-i(lambda_1+ldots+lambda_N-1) \
      e^i2lambda_1 & cdots & e^i2lambda_N-1 & e^-i2(lambda_1+ldots+lambda_N-1) \
      vdots & ddots & vdots & vdots \
      e^i(N-1)lambda_1 & cdots & e^i(N-1)lambda_N-1 & e^-i(N-1)(lambda_1+ldots+lambda_N-1) \
      endvmatrix^2 dlambda_1dots dlambda_N-1 \
      & = frac1N!(2pi)^N-1 prod_1leq j<kleq N-1 |e^ilambda_j-e^ilambda_k|^2 prod_1leq jleq N-1 |e^ilambda_j-e^-i(lambda_1+ldots+lambda_N-1)|^2 dlambda_1dots dlambda_N-1 \
      endalign
      $$

      in the form of
      $$ dX_SU(N) = frac1N!(2pi)^N-1 det_(N-1)X(N-1)(K(lambda_j,lambda_k))_1leq j,kleq N-1 text dlambda_1dots dlambda_N-1 $$







      fa.functional-analysis random-matrices determinants integral-kernel






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago

























      asked 4 hours ago









      Amadocta

      664




      664




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          3
          down vote













          The integral kernel for $rm U,(N)$, due to Dyson, has been generalized by Katz and Sarnak to other compact groups (Random Matrices, Frobenius Eigenvalues, and Monodromy, page 121). Their result has the general form
          $$dmu=frac1n!det_ntimes n[L_N(lambda_i,lambda_j)]prod_i=1^nfracdlambda_isigmapi,;;lambda_iin[0,sigmapi],;;1leq ileq n,$$
          $$S_N(x)=fracsin(Nx/2)sin(x/2),;;
          L_N(x,y)=tfrac12sigma[S_rho N+tau(x-y)+varepsilon S_rho N+tau(x+y)].$$

          The coefficients are tabulated as follows:



          The group $rm SU,(N)$ is conspicuously missing from this table... I would assume there is a reason for this (Katz and Sarnak discuss $rm SU,(N)$ at various other points in their text). My surmise is that there is no way to incorporate the delta function $deltabigl(sum_i=1^N lambda_ibigr)$ into an $(N-1)times(N-1)$ determinant.






          share|cite|improve this answer






















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "504"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f311314%2fintegral-kernel-function-for-the-sun-group%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            3
            down vote













            The integral kernel for $rm U,(N)$, due to Dyson, has been generalized by Katz and Sarnak to other compact groups (Random Matrices, Frobenius Eigenvalues, and Monodromy, page 121). Their result has the general form
            $$dmu=frac1n!det_ntimes n[L_N(lambda_i,lambda_j)]prod_i=1^nfracdlambda_isigmapi,;;lambda_iin[0,sigmapi],;;1leq ileq n,$$
            $$S_N(x)=fracsin(Nx/2)sin(x/2),;;
            L_N(x,y)=tfrac12sigma[S_rho N+tau(x-y)+varepsilon S_rho N+tau(x+y)].$$

            The coefficients are tabulated as follows:



            The group $rm SU,(N)$ is conspicuously missing from this table... I would assume there is a reason for this (Katz and Sarnak discuss $rm SU,(N)$ at various other points in their text). My surmise is that there is no way to incorporate the delta function $deltabigl(sum_i=1^N lambda_ibigr)$ into an $(N-1)times(N-1)$ determinant.






            share|cite|improve this answer


























              up vote
              3
              down vote













              The integral kernel for $rm U,(N)$, due to Dyson, has been generalized by Katz and Sarnak to other compact groups (Random Matrices, Frobenius Eigenvalues, and Monodromy, page 121). Their result has the general form
              $$dmu=frac1n!det_ntimes n[L_N(lambda_i,lambda_j)]prod_i=1^nfracdlambda_isigmapi,;;lambda_iin[0,sigmapi],;;1leq ileq n,$$
              $$S_N(x)=fracsin(Nx/2)sin(x/2),;;
              L_N(x,y)=tfrac12sigma[S_rho N+tau(x-y)+varepsilon S_rho N+tau(x+y)].$$

              The coefficients are tabulated as follows:



              The group $rm SU,(N)$ is conspicuously missing from this table... I would assume there is a reason for this (Katz and Sarnak discuss $rm SU,(N)$ at various other points in their text). My surmise is that there is no way to incorporate the delta function $deltabigl(sum_i=1^N lambda_ibigr)$ into an $(N-1)times(N-1)$ determinant.






              share|cite|improve this answer
























                up vote
                3
                down vote










                up vote
                3
                down vote









                The integral kernel for $rm U,(N)$, due to Dyson, has been generalized by Katz and Sarnak to other compact groups (Random Matrices, Frobenius Eigenvalues, and Monodromy, page 121). Their result has the general form
                $$dmu=frac1n!det_ntimes n[L_N(lambda_i,lambda_j)]prod_i=1^nfracdlambda_isigmapi,;;lambda_iin[0,sigmapi],;;1leq ileq n,$$
                $$S_N(x)=fracsin(Nx/2)sin(x/2),;;
                L_N(x,y)=tfrac12sigma[S_rho N+tau(x-y)+varepsilon S_rho N+tau(x+y)].$$

                The coefficients are tabulated as follows:



                The group $rm SU,(N)$ is conspicuously missing from this table... I would assume there is a reason for this (Katz and Sarnak discuss $rm SU,(N)$ at various other points in their text). My surmise is that there is no way to incorporate the delta function $deltabigl(sum_i=1^N lambda_ibigr)$ into an $(N-1)times(N-1)$ determinant.






                share|cite|improve this answer














                The integral kernel for $rm U,(N)$, due to Dyson, has been generalized by Katz and Sarnak to other compact groups (Random Matrices, Frobenius Eigenvalues, and Monodromy, page 121). Their result has the general form
                $$dmu=frac1n!det_ntimes n[L_N(lambda_i,lambda_j)]prod_i=1^nfracdlambda_isigmapi,;;lambda_iin[0,sigmapi],;;1leq ileq n,$$
                $$S_N(x)=fracsin(Nx/2)sin(x/2),;;
                L_N(x,y)=tfrac12sigma[S_rho N+tau(x-y)+varepsilon S_rho N+tau(x+y)].$$

                The coefficients are tabulated as follows:



                The group $rm SU,(N)$ is conspicuously missing from this table... I would assume there is a reason for this (Katz and Sarnak discuss $rm SU,(N)$ at various other points in their text). My surmise is that there is no way to incorporate the delta function $deltabigl(sum_i=1^N lambda_ibigr)$ into an $(N-1)times(N-1)$ determinant.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 1 hour ago

























                answered 1 hour ago









                Carlo Beenakker

                69k8155260




                69k8155260



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f311314%2fintegral-kernel-function-for-the-sun-group%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What does second last employer means? [closed]

                    Installing NextGIS Connect into QGIS 3?

                    One-line joke