How to convert the solution of this recurrence like this form?
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
I am trying to solve the recurrence sequence. I tried
RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],
n] // Simplify
I got
a[n] -> 3 Coth[2^(-1 + n) ArcCoth[1/3]]
How to convert this solution to this form
(3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1)
output-formatting sequence
add a comment |Â
up vote
3
down vote
favorite
I am trying to solve the recurrence sequence. I tried
RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],
n] // Simplify
I got
a[n] -> 3 Coth[2^(-1 + n) ArcCoth[1/3]]
How to convert this solution to this form
(3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1)
output-formatting sequence
This is not possible for these are entirely different number. One has $a(n) to 0$ for $n to infty$, but $(3 (49 + 49^n))/(-49 + 49^n) to 3$.
– Henrik Schumacher
1 hour ago
They are not equal atn=2
for instance.
– b.gatessucks
1 hour ago
I just realized that the solution $a(n)$ given by Mathematica does not fulfill the recurrence relation...
– Henrik Schumacher
1 hour ago
@b.gatessucks Edited.
– minhthien_2016
1 hour ago
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I am trying to solve the recurrence sequence. I tried
RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],
n] // Simplify
I got
a[n] -> 3 Coth[2^(-1 + n) ArcCoth[1/3]]
How to convert this solution to this form
(3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1)
output-formatting sequence
I am trying to solve the recurrence sequence. I tried
RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],
n] // Simplify
I got
a[n] -> 3 Coth[2^(-1 + n) ArcCoth[1/3]]
How to convert this solution to this form
(3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1)
output-formatting sequence
output-formatting sequence
edited 1 hour ago
asked 1 hour ago
minhthien_2016
447310
447310
This is not possible for these are entirely different number. One has $a(n) to 0$ for $n to infty$, but $(3 (49 + 49^n))/(-49 + 49^n) to 3$.
– Henrik Schumacher
1 hour ago
They are not equal atn=2
for instance.
– b.gatessucks
1 hour ago
I just realized that the solution $a(n)$ given by Mathematica does not fulfill the recurrence relation...
– Henrik Schumacher
1 hour ago
@b.gatessucks Edited.
– minhthien_2016
1 hour ago
add a comment |Â
This is not possible for these are entirely different number. One has $a(n) to 0$ for $n to infty$, but $(3 (49 + 49^n))/(-49 + 49^n) to 3$.
– Henrik Schumacher
1 hour ago
They are not equal atn=2
for instance.
– b.gatessucks
1 hour ago
I just realized that the solution $a(n)$ given by Mathematica does not fulfill the recurrence relation...
– Henrik Schumacher
1 hour ago
@b.gatessucks Edited.
– minhthien_2016
1 hour ago
This is not possible for these are entirely different number. One has $a(n) to 0$ for $n to infty$, but $(3 (49 + 49^n))/(-49 + 49^n) to 3$.
– Henrik Schumacher
1 hour ago
This is not possible for these are entirely different number. One has $a(n) to 0$ for $n to infty$, but $(3 (49 + 49^n))/(-49 + 49^n) to 3$.
– Henrik Schumacher
1 hour ago
They are not equal at
n=2
for instance.– b.gatessucks
1 hour ago
They are not equal at
n=2
for instance.– b.gatessucks
1 hour ago
I just realized that the solution $a(n)$ given by Mathematica does not fulfill the recurrence relation...
– Henrik Schumacher
1 hour ago
I just realized that the solution $a(n)$ given by Mathematica does not fulfill the recurrence relation...
– Henrik Schumacher
1 hour ago
@b.gatessucks Edited.
– minhthien_2016
1 hour ago
@b.gatessucks Edited.
– minhthien_2016
1 hour ago
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
A way:
sol = a[n] /. RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]]
FullSimplify[sol // TrigToExp // ComplexExpand, Assumptions -> n > 1, n [Element] Integers] // Factor
$frac3 left(2^2^n-1+1right)2^2^n-1-1$
add a comment |Â
up vote
1
down vote
The following verifies your result
sol = RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]];
Assuming[n > 1 && n ∈ Integers, (3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1) == a[n] /.sol // FullSimplify]
Note that your second expression has the wrong limiting value for n=1
. This may make it harder to find an automatic transformation.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
A way:
sol = a[n] /. RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]]
FullSimplify[sol // TrigToExp // ComplexExpand, Assumptions -> n > 1, n [Element] Integers] // Factor
$frac3 left(2^2^n-1+1right)2^2^n-1-1$
add a comment |Â
up vote
1
down vote
accepted
A way:
sol = a[n] /. RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]]
FullSimplify[sol // TrigToExp // ComplexExpand, Assumptions -> n > 1, n [Element] Integers] // Factor
$frac3 left(2^2^n-1+1right)2^2^n-1-1$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
A way:
sol = a[n] /. RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]]
FullSimplify[sol // TrigToExp // ComplexExpand, Assumptions -> n > 1, n [Element] Integers] // Factor
$frac3 left(2^2^n-1+1right)2^2^n-1-1$
A way:
sol = a[n] /. RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]]
FullSimplify[sol // TrigToExp // ComplexExpand, Assumptions -> n > 1, n [Element] Integers] // Factor
$frac3 left(2^2^n-1+1right)2^2^n-1-1$
answered 32 mins ago
Mariusz Iwaniuk
6,26811027
6,26811027
add a comment |Â
add a comment |Â
up vote
1
down vote
The following verifies your result
sol = RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]];
Assuming[n > 1 && n ∈ Integers, (3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1) == a[n] /.sol // FullSimplify]
Note that your second expression has the wrong limiting value for n=1
. This may make it harder to find an automatic transformation.
add a comment |Â
up vote
1
down vote
The following verifies your result
sol = RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]];
Assuming[n > 1 && n ∈ Integers, (3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1) == a[n] /.sol // FullSimplify]
Note that your second expression has the wrong limiting value for n=1
. This may make it harder to find an automatic transformation.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
The following verifies your result
sol = RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]];
Assuming[n > 1 && n ∈ Integers, (3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1) == a[n] /.sol // FullSimplify]
Note that your second expression has the wrong limiting value for n=1
. This may make it harder to find an automatic transformation.
The following verifies your result
sol = RSolve[a[n] == 1/2 (a[n - 1] + 9/a[n - 1]), a[1] == 1, a[n],n][[1, 1]];
Assuming[n > 1 && n ∈ Integers, (3*2^(2^(-1 + n)) + 3)/(2^(2^(-1 + n)) - 1) == a[n] /.sol // FullSimplify]
Note that your second expression has the wrong limiting value for n=1
. This may make it harder to find an automatic transformation.
answered 51 mins ago


mikado
6,0771829
6,0771829
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f182859%2fhow-to-convert-the-solution-of-this-recurrence-like-this-form%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
This is not possible for these are entirely different number. One has $a(n) to 0$ for $n to infty$, but $(3 (49 + 49^n))/(-49 + 49^n) to 3$.
– Henrik Schumacher
1 hour ago
They are not equal at
n=2
for instance.– b.gatessucks
1 hour ago
I just realized that the solution $a(n)$ given by Mathematica does not fulfill the recurrence relation...
– Henrik Schumacher
1 hour ago
@b.gatessucks Edited.
– minhthien_2016
1 hour ago