First order non linear ODE with Bernoulli
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossibleâ¦
Thanks for any help!
differential-equations
add a comment |Â
up vote
4
down vote
favorite
I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossibleâ¦
Thanks for any help!
differential-equations
You may set $z=y^-3$.
â dmtri
1 hour ago
Do you mean you cannot solve for $C$ ?
â dmtri
1 hour ago
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
1 hour ago
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossibleâ¦
Thanks for any help!
differential-equations
I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossibleâ¦
Thanks for any help!
differential-equations
differential-equations
edited 1 hour ago
Harry49
5,0972827
5,0972827
asked 1 hour ago
Marco Pittella
524
524
You may set $z=y^-3$.
â dmtri
1 hour ago
Do you mean you cannot solve for $C$ ?
â dmtri
1 hour ago
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
1 hour ago
add a comment |Â
You may set $z=y^-3$.
â dmtri
1 hour ago
Do you mean you cannot solve for $C$ ?
â dmtri
1 hour ago
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
1 hour ago
You may set $z=y^-3$.
â dmtri
1 hour ago
You may set $z=y^-3$.
â dmtri
1 hour ago
Do you mean you cannot solve for $C$ ?
â dmtri
1 hour ago
Do you mean you cannot solve for $C$ ?
â dmtri
1 hour ago
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
1 hour ago
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
1 hour ago
add a comment |Â
5 Answers
5
active
oldest
votes
up vote
1
down vote
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
add a comment |Â
up vote
0
down vote
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
35 mins ago
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
6 mins ago
add a comment |Â
up vote
0
down vote
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
add a comment |Â
up vote
0
down vote
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
add a comment |Â
up vote
0
down vote
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
add a comment |Â
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
add a comment |Â
up vote
1
down vote
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$
edited 45 mins ago
amWhy
190k27221433
190k27221433
answered 1 hour ago
Dr. Sonnhard Graubner
69.1k32761
69.1k32761
add a comment |Â
add a comment |Â
up vote
0
down vote
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
35 mins ago
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
6 mins ago
add a comment |Â
up vote
0
down vote
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
35 mins ago
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
6 mins ago
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
Substitute $z=1/y^3$
$$z'+3xz=3x$$
Tis equation is separable
$$z'=3x(1-z)$$
$$int frac dz1-z=frac 32x^2+C$$
$$-ln (z-1)=frac 32x^2+C$$
$$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$
Therefore
$$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
$$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
$$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$
edited 44 mins ago
answered 50 mins ago
Isham
11.2k3929
11.2k3929
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
35 mins ago
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
6 mins ago
add a comment |Â
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
35 mins ago
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
6 mins ago
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
35 mins ago
So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
â Marco Pittella
35 mins ago
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
6 mins ago
@marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
â Isham
6 mins ago
add a comment |Â
up vote
0
down vote
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
add a comment |Â
up vote
0
down vote
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$
edited 41 mins ago
amWhy
190k27221433
190k27221433
answered 1 hour ago
dmtri
956518
956518
add a comment |Â
add a comment |Â
up vote
0
down vote
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
add a comment |Â
up vote
0
down vote
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
$$
frac13 u'(x)+xu(x) = x
$$
with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
beginaligned
u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
&= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
endaligned
from which one deduces $y=u^-1/3$.
edited 35 mins ago
answered 57 mins ago
Harry49
5,0972827
5,0972827
add a comment |Â
add a comment |Â
up vote
0
down vote
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
add a comment |Â
up vote
0
down vote
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
To reach a better understanding of my problem, i will write all the passages.
$fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$
Now i put $z=y^-3rightarrow z^'=-3xz+3x$.
$y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$
$y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$
Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$
Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.
edited 28 mins ago
answered 48 mins ago
Marco Pittella
524
524
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2926531%2ffirst-order-non-linear-ode-with-bernoulli%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
You may set $z=y^-3$.
â dmtri
1 hour ago
Do you mean you cannot solve for $C$ ?
â dmtri
1 hour ago
it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
â Isham
1 hour ago