First order non linear ODE with Bernoulli

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite
1












I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossible…



Thanks for any help!










share|cite|improve this question























  • You may set $z=y^-3$.
    – dmtri
    1 hour ago










  • Do you mean you cannot solve for $C$ ?
    – dmtri
    1 hour ago










  • it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
    – Isham
    1 hour ago















up vote
4
down vote

favorite
1












I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossible…



Thanks for any help!










share|cite|improve this question























  • You may set $z=y^-3$.
    – dmtri
    1 hour ago










  • Do you mean you cannot solve for $C$ ?
    – dmtri
    1 hour ago










  • it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
    – Isham
    1 hour ago













up vote
4
down vote

favorite
1









up vote
4
down vote

favorite
1






1





I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossible…



Thanks for any help!










share|cite|improve this question















I have a problem with this equation: $ y'(x)-xy(x)=-xy^4(x) $ with initial condition $ y(x_0)=y_0$.
I'm arrived to prove that $ y_0= (Ce^-frac32x_0^2+1)^-3 $ but now i can't move on. Moreover, WolframAlpha's solution is next to impossible…



Thanks for any help!







differential-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Harry49

5,0972827




5,0972827










asked 1 hour ago









Marco Pittella

524




524











  • You may set $z=y^-3$.
    – dmtri
    1 hour ago










  • Do you mean you cannot solve for $C$ ?
    – dmtri
    1 hour ago










  • it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
    – Isham
    1 hour ago

















  • You may set $z=y^-3$.
    – dmtri
    1 hour ago










  • Do you mean you cannot solve for $C$ ?
    – dmtri
    1 hour ago










  • it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
    – Isham
    1 hour ago
















You may set $z=y^-3$.
– dmtri
1 hour ago




You may set $z=y^-3$.
– dmtri
1 hour ago












Do you mean you cannot solve for $C$ ?
– dmtri
1 hour ago




Do you mean you cannot solve for $C$ ?
– dmtri
1 hour ago












it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
– Isham
1 hour ago





it's exponent $-1/3$ not $-3$ since we have that$$y(x)=frac 1 (Ke^-3x^2/2+1)^1/3$$
– Isham
1 hour ago











5 Answers
5






active

oldest

votes

















up vote
1
down vote













Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$






share|cite|improve this answer





























    up vote
    0
    down vote













    Substitute $z=1/y^3$
    $$z'+3xz=3x$$
    Tis equation is separable
    $$z'=3x(1-z)$$
    $$int frac dz1-z=frac 32x^2+C$$
    $$-ln (z-1)=frac 32x^2+C$$
    $$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$




    Therefore
    $$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
    $$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
    $$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$






    share|cite|improve this answer






















    • So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
      – Marco Pittella
      35 mins ago










    • @marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
      – Isham
      6 mins ago


















    up vote
    0
    down vote













    We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$






    share|cite|improve this answer





























      up vote
      0
      down vote













      Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
      $$
      frac13 u'(x)+xu(x) = x
      $$
      with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
      beginaligned
      u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
      &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
      endaligned
      from which one deduces $y=u^-1/3$.






      share|cite|improve this answer





























        up vote
        0
        down vote













        To reach a better understanding of my problem, i will write all the passages.



        $fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$



        Now i put $z=y^-3rightarrow z^'=-3xz+3x$.



        $y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$



        $y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$



        Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$



        Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.






        share|cite|improve this answer






















          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2926531%2ffirst-order-non-linear-ode-with-bernoulli%23new-answer', 'question_page');

          );

          Post as a guest






























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote













          Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$






          share|cite|improve this answer


























            up vote
            1
            down vote













            Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$






            share|cite|improve this answer
























              up vote
              1
              down vote










              up vote
              1
              down vote









              Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$






              share|cite|improve this answer














              Hint: Write this as $$fracy'(x)y(x)-y(x)^4=x$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 45 mins ago









              amWhy

              190k27221433




              190k27221433










              answered 1 hour ago









              Dr. Sonnhard Graubner

              69.1k32761




              69.1k32761




















                  up vote
                  0
                  down vote













                  Substitute $z=1/y^3$
                  $$z'+3xz=3x$$
                  Tis equation is separable
                  $$z'=3x(1-z)$$
                  $$int frac dz1-z=frac 32x^2+C$$
                  $$-ln (z-1)=frac 32x^2+C$$
                  $$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$




                  Therefore
                  $$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
                  $$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
                  $$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$






                  share|cite|improve this answer






















                  • So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
                    – Marco Pittella
                    35 mins ago










                  • @marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
                    – Isham
                    6 mins ago















                  up vote
                  0
                  down vote













                  Substitute $z=1/y^3$
                  $$z'+3xz=3x$$
                  Tis equation is separable
                  $$z'=3x(1-z)$$
                  $$int frac dz1-z=frac 32x^2+C$$
                  $$-ln (z-1)=frac 32x^2+C$$
                  $$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$




                  Therefore
                  $$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
                  $$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
                  $$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$






                  share|cite|improve this answer






















                  • So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
                    – Marco Pittella
                    35 mins ago










                  • @marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
                    – Isham
                    6 mins ago













                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Substitute $z=1/y^3$
                  $$z'+3xz=3x$$
                  Tis equation is separable
                  $$z'=3x(1-z)$$
                  $$int frac dz1-z=frac 32x^2+C$$
                  $$-ln (z-1)=frac 32x^2+C$$
                  $$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$




                  Therefore
                  $$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
                  $$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
                  $$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$






                  share|cite|improve this answer














                  Substitute $z=1/y^3$
                  $$z'+3xz=3x$$
                  Tis equation is separable
                  $$z'=3x(1-z)$$
                  $$int frac dz1-z=frac 32x^2+C$$
                  $$-ln (z-1)=frac 32x^2+C$$
                  $$implies y^3(x)=frac 1 Ke^-3x^2/2+1$$




                  Therefore
                  $$y_0^3=frac 1 Ke^-3x_0^2/2+1$$
                  $$Ke^-3x_0^2/2=frac 1 y_0^3-1$$
                  $$K=left (frac 1 y_0^3-1 right)e^3x_0^2/2$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 44 mins ago

























                  answered 50 mins ago









                  Isham

                  11.2k3929




                  11.2k3929











                  • So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
                    – Marco Pittella
                    35 mins ago










                  • @marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
                    – Isham
                    6 mins ago

















                  • So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
                    – Marco Pittella
                    35 mins ago










                  • @marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
                    – Isham
                    6 mins ago
















                  So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
                  – Marco Pittella
                  35 mins ago




                  So the final result is $y=frac1[(frac1y_0^3-1)e^-frac32x^2]e^-frac32x^2+1$?
                  – Marco Pittella
                  35 mins ago












                  @marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
                  – Isham
                  6 mins ago





                  @marco dont forget the exponent $1/3$ and you can also write $e^-3/2(x^2+x_0^2)$
                  – Isham
                  6 mins ago











                  up vote
                  0
                  down vote













                  We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$






                  share|cite|improve this answer


























                    up vote
                    0
                    down vote













                    We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$






                    share|cite|improve this answer
























                      up vote
                      0
                      down vote










                      up vote
                      0
                      down vote









                      We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$






                      share|cite|improve this answer














                      We have $$C=e^frac3x_0^22(y_0^-1/3-1)$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 41 mins ago









                      amWhy

                      190k27221433




                      190k27221433










                      answered 1 hour ago









                      dmtri

                      956518




                      956518




















                          up vote
                          0
                          down vote













                          Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
                          $$
                          frac13 u'(x)+xu(x) = x
                          $$
                          with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
                          beginaligned
                          u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
                          &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
                          endaligned
                          from which one deduces $y=u^-1/3$.






                          share|cite|improve this answer


























                            up vote
                            0
                            down vote













                            Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
                            $$
                            frac13 u'(x)+xu(x) = x
                            $$
                            with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
                            beginaligned
                            u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
                            &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
                            endaligned
                            from which one deduces $y=u^-1/3$.






                            share|cite|improve this answer
























                              up vote
                              0
                              down vote










                              up vote
                              0
                              down vote









                              Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
                              $$
                              frac13 u'(x)+xu(x) = x
                              $$
                              with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
                              beginaligned
                              u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
                              &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
                              endaligned
                              from which one deduces $y=u^-1/3$.






                              share|cite|improve this answer














                              Let us solve the Bernoulli differential equation $$y'(x)-xy(x)=-xy(x)^4$$ with initial condition $y (x_0)=y_0$. Dividing by $y^4$ and setting $u=y^-3$, we have the linear ODE
                              $$
                              frac13 u'(x)+xu(x) = x
                              $$
                              with initial condition $u (x_0)=y_0^-3$. The solution obtained by integrating factor reads
                              beginaligned
                              u(x) &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + 3 int_x_0^x t e^3t^2/2 ,text d t right) \
                              &= e^-3 (x^2-x_0^2)/2 left(y_0^-3 + e^3x^2/2 - e^3x_0^2/2 right) ,
                              endaligned
                              from which one deduces $y=u^-1/3$.







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited 35 mins ago

























                              answered 57 mins ago









                              Harry49

                              5,0972827




                              5,0972827




















                                  up vote
                                  0
                                  down vote













                                  To reach a better understanding of my problem, i will write all the passages.



                                  $fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$



                                  Now i put $z=y^-3rightarrow z^'=-3xz+3x$.



                                  $y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$



                                  $y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$



                                  Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$



                                  Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.






                                  share|cite|improve this answer


























                                    up vote
                                    0
                                    down vote













                                    To reach a better understanding of my problem, i will write all the passages.



                                    $fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$



                                    Now i put $z=y^-3rightarrow z^'=-3xz+3x$.



                                    $y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$



                                    $y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$



                                    Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$



                                    Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.






                                    share|cite|improve this answer
























                                      up vote
                                      0
                                      down vote










                                      up vote
                                      0
                                      down vote









                                      To reach a better understanding of my problem, i will write all the passages.



                                      $fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$



                                      Now i put $z=y^-3rightarrow z^'=-3xz+3x$.



                                      $y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$



                                      $y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$



                                      Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$



                                      Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.






                                      share|cite|improve this answer














                                      To reach a better understanding of my problem, i will write all the passages.



                                      $fracy^'y^4=fracxyy^3-xrightarrow fracy^'y^4=xy^-3-x$



                                      Now i put $z=y^-3rightarrow z^'=-3xz+3x$.



                                      $y_0(x)=Ce^A(x)rightarrow A(x)=int -3xdx=-frac32x^2rightarrow y_0(x)=Ce^-frac32x^2$



                                      $y_p(x)=e^A(x)B(x)rightarrow B(x)=int -3xcdot e^A(x)dx=int -3xcdot e^frac32x^2dx$



                                      Now i put $frac32x^2=trightarrow dt=3xdxrightarrow dx=fracdx3x$



                                      Since $int -3xe^tfracdt3x=-e^frac32x^2rightarrow y_px=1$, i obtain $y(x)=Ce^-frac32x^2+1$. But since $y^-3=z$...the result that i wrote.







                                      share|cite|improve this answer














                                      share|cite|improve this answer



                                      share|cite|improve this answer








                                      edited 28 mins ago

























                                      answered 48 mins ago









                                      Marco Pittella

                                      524




                                      524



























                                           

                                          draft saved


                                          draft discarded















































                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2926531%2ffirst-order-non-linear-ode-with-bernoulli%23new-answer', 'question_page');

                                          );

                                          Post as a guest













































































                                          Comments

                                          Popular posts from this blog

                                          Long meetings (6-7 hours a day): Being “babysat” by supervisor

                                          Is the Concept of Multiple Fantasy Races Scientifically Flawed? [closed]

                                          Confectionery