Complex numbers, how cand I show that |z1|=|z2|=|z3|?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
2












Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$










share|cite|improve this question



























    up vote
    1
    down vote

    favorite
    2












    Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$










    share|cite|improve this question

























      up vote
      1
      down vote

      favorite
      2









      up vote
      1
      down vote

      favorite
      2






      2





      Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$










      share|cite|improve this question















      Show that if $z_1,z_2,z_3$ are complex numbers, $z_1+z_2+z_3=0$ and $z_1^2+z_2^2+z_3^2=0$ then: $|z_1|=|z_2|=|z_3|$







      complex-analysis complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 32 mins ago









      Olof Rubin

      1007




      1007










      asked 40 mins ago









      anonimousfifiha

      356




      356




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          5
          down vote













          $$z_3=-z_1-z_2\
          z_3^2=z_1^2+2z_1z_2+z_2^2$$

          Since $z_3^2=-z_1^2-z_2^2$ you get
          $$z_1^2+z_1z_2+z_2^2=0$$
          Multiplying by $z_1-z_2$ you get
          $$z_1^3=z_2^3$$



          Applying absolute values you get
          $$|z_1|^3=|z_2|^3$$
          and hence
          $$|z_1|=|z_2|$$



          The equality $|z_1|=|z_3|$ can be obtained same way.






          share|cite|improve this answer




















          • (+1) Nicely done.
            – Mark Viola
            8 mins ago

















          up vote
          4
          down vote













          $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
          So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.






          share|cite|improve this answer






















          • (+1) Well done!
            – Mark Viola
            9 mins ago

















          up vote
          0
          down vote













          Let $f=(t-z_1)(t-z_2)(t-z_3)$.



          Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



          In expanded form, $f$ can be expressed as
          $$f=t^3-at^2+bt-c$$
          where
          beginalign*
          a&=z_1+z_2+z_3\[4pt]
          b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
          c&=z_1z_2z_3\[4pt]
          endalign*

          From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
          $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
          yields $b=0$.



          Thus, $f=t^3-c$, hence, since
          $$f(z_1)=f(z_2)=f(z_3)=0$$
          we get
          $$z_1^3=z_2^3=z_3^3=c$$
          so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2963634%2fcomplex-numbers-how-cand-i-show-that-z1-z2-z3%23new-answer', 'question_page');

            );

            Post as a guest






























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            5
            down vote













            $$z_3=-z_1-z_2\
            z_3^2=z_1^2+2z_1z_2+z_2^2$$

            Since $z_3^2=-z_1^2-z_2^2$ you get
            $$z_1^2+z_1z_2+z_2^2=0$$
            Multiplying by $z_1-z_2$ you get
            $$z_1^3=z_2^3$$



            Applying absolute values you get
            $$|z_1|^3=|z_2|^3$$
            and hence
            $$|z_1|=|z_2|$$



            The equality $|z_1|=|z_3|$ can be obtained same way.






            share|cite|improve this answer




















            • (+1) Nicely done.
              – Mark Viola
              8 mins ago














            up vote
            5
            down vote













            $$z_3=-z_1-z_2\
            z_3^2=z_1^2+2z_1z_2+z_2^2$$

            Since $z_3^2=-z_1^2-z_2^2$ you get
            $$z_1^2+z_1z_2+z_2^2=0$$
            Multiplying by $z_1-z_2$ you get
            $$z_1^3=z_2^3$$



            Applying absolute values you get
            $$|z_1|^3=|z_2|^3$$
            and hence
            $$|z_1|=|z_2|$$



            The equality $|z_1|=|z_3|$ can be obtained same way.






            share|cite|improve this answer




















            • (+1) Nicely done.
              – Mark Viola
              8 mins ago












            up vote
            5
            down vote










            up vote
            5
            down vote









            $$z_3=-z_1-z_2\
            z_3^2=z_1^2+2z_1z_2+z_2^2$$

            Since $z_3^2=-z_1^2-z_2^2$ you get
            $$z_1^2+z_1z_2+z_2^2=0$$
            Multiplying by $z_1-z_2$ you get
            $$z_1^3=z_2^3$$



            Applying absolute values you get
            $$|z_1|^3=|z_2|^3$$
            and hence
            $$|z_1|=|z_2|$$



            The equality $|z_1|=|z_3|$ can be obtained same way.






            share|cite|improve this answer












            $$z_3=-z_1-z_2\
            z_3^2=z_1^2+2z_1z_2+z_2^2$$

            Since $z_3^2=-z_1^2-z_2^2$ you get
            $$z_1^2+z_1z_2+z_2^2=0$$
            Multiplying by $z_1-z_2$ you get
            $$z_1^3=z_2^3$$



            Applying absolute values you get
            $$|z_1|^3=|z_2|^3$$
            and hence
            $$|z_1|=|z_2|$$



            The equality $|z_1|=|z_3|$ can be obtained same way.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 24 mins ago









            N. S.

            100k5106200




            100k5106200











            • (+1) Nicely done.
              – Mark Viola
              8 mins ago
















            • (+1) Nicely done.
              – Mark Viola
              8 mins ago















            (+1) Nicely done.
            – Mark Viola
            8 mins ago




            (+1) Nicely done.
            – Mark Viola
            8 mins ago










            up vote
            4
            down vote













            $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
            So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.






            share|cite|improve this answer






















            • (+1) Well done!
              – Mark Viola
              9 mins ago














            up vote
            4
            down vote













            $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
            So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.






            share|cite|improve this answer






















            • (+1) Well done!
              – Mark Viola
              9 mins ago












            up vote
            4
            down vote










            up vote
            4
            down vote









            $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
            So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.






            share|cite|improve this answer














            $$z_1 z_2 + z_2 z_3 + z_3 z_1 = big((z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)big)/2 = 0.$$
            So $(z-z_1)(z-z_2)(z-z_3)=z^3-z_1 z_2 z_3$ for any $z$, and $z_1^3=z_2^3=z_3^3(=z_1 z_2 z_3)$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 13 mins ago

























            answered 33 mins ago









            metamorphy

            1,9361313




            1,9361313











            • (+1) Well done!
              – Mark Viola
              9 mins ago
















            • (+1) Well done!
              – Mark Viola
              9 mins ago















            (+1) Well done!
            – Mark Viola
            9 mins ago




            (+1) Well done!
            – Mark Viola
            9 mins ago










            up vote
            0
            down vote













            Let $f=(t-z_1)(t-z_2)(t-z_3)$.



            Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



            In expanded form, $f$ can be expressed as
            $$f=t^3-at^2+bt-c$$
            where
            beginalign*
            a&=z_1+z_2+z_3\[4pt]
            b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
            c&=z_1z_2z_3\[4pt]
            endalign*

            From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
            $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
            yields $b=0$.



            Thus, $f=t^3-c$, hence, since
            $$f(z_1)=f(z_2)=f(z_3)=0$$
            we get
            $$z_1^3=z_2^3=z_3^3=c$$
            so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.






            share|cite|improve this answer
























              up vote
              0
              down vote













              Let $f=(t-z_1)(t-z_2)(t-z_3)$.



              Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



              In expanded form, $f$ can be expressed as
              $$f=t^3-at^2+bt-c$$
              where
              beginalign*
              a&=z_1+z_2+z_3\[4pt]
              b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
              c&=z_1z_2z_3\[4pt]
              endalign*

              From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
              $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
              yields $b=0$.



              Thus, $f=t^3-c$, hence, since
              $$f(z_1)=f(z_2)=f(z_3)=0$$
              we get
              $$z_1^3=z_2^3=z_3^3=c$$
              so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.






              share|cite|improve this answer






















                up vote
                0
                down vote










                up vote
                0
                down vote









                Let $f=(t-z_1)(t-z_2)(t-z_3)$.



                Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



                In expanded form, $f$ can be expressed as
                $$f=t^3-at^2+bt-c$$
                where
                beginalign*
                a&=z_1+z_2+z_3\[4pt]
                b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
                c&=z_1z_2z_3\[4pt]
                endalign*

                From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
                $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
                yields $b=0$.



                Thus, $f=t^3-c$, hence, since
                $$f(z_1)=f(z_2)=f(z_3)=0$$
                we get
                $$z_1^3=z_2^3=z_3^3=c$$
                so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.






                share|cite|improve this answer












                Let $f=(t-z_1)(t-z_2)(t-z_3)$.



                Then $f$ is a cubic polynomial in $t$, with roots $z_1,z_2,z_3$.



                In expanded form, $f$ can be expressed as
                $$f=t^3-at^2+bt-c$$
                where
                beginalign*
                a&=z_1+z_2+z_3\[4pt]
                b&=z_1z_2+z_2z_3+z_3z_1\[4pt]
                c&=z_1z_2z_3\[4pt]
                endalign*

                From $z_1+z_2+z_3=0$, we get $a=0$, and since we also have $z_1^2+z_2^2+z_3^2=0$, the identity
                $$(z_1+z_2+z_3)^2=z_1^2+z_2^2+z_3^2+2(z_1z_2+z_2z_3+z_3z_1)$$
                yields $b=0$.



                Thus, $f=t^3-c$, hence, since
                $$f(z_1)=f(z_2)=f(z_3)=0$$
                we get
                $$z_1^3=z_2^3=z_3^3=c$$
                so $|z_1|^3=|z_2|^3=|z_3|^3$, which yields $|z_1|=|z_2|=|z_3|$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 12 mins ago









                quasi

                34.5k22561




                34.5k22561



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2963634%2fcomplex-numbers-how-cand-i-show-that-z1-z2-z3%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    Long meetings (6-7 hours a day): Being “babysat” by supervisor

                    Is the Concept of Multiple Fantasy Races Scientifically Flawed? [closed]

                    Confectionery