How to solve this following integral?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$
I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.
How should I do or approach this question?
integration
New contributor
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |Â
up vote
1
down vote
favorite
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$
I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.
How should I do or approach this question?
integration
New contributor
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$
I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.
How should I do or approach this question?
integration
New contributor
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$
I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.
How should I do or approach this question?
integration
integration
New contributor
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
edited 36 mins ago
New contributor
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
asked 42 mins ago


Football Life
526
526
New contributor
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
New contributor
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
8
down vote
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
add a comment |Â
up vote
3
down vote
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
add a comment |Â
up vote
8
down vote
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
add a comment |Â
up vote
8
down vote
up vote
8
down vote
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
answered 37 mins ago


Pradyuman Dixit
60610
60610
add a comment |Â
add a comment |Â
up vote
3
down vote
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
add a comment |Â
up vote
3
down vote
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
answered 24 mins ago
Lord Shark the Unknown
91.9k955118
91.9k955118
add a comment |Â
add a comment |Â
Football Life is a new contributor. Be nice, and check out our Code of Conduct.
Football Life is a new contributor. Be nice, and check out our Code of Conduct.
Football Life is a new contributor. Be nice, and check out our Code of Conduct.
Football Life is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2952258%2fhow-to-solve-this-following-integral%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password