How to solve this following integral?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
2












$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$



I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.



How should I do or approach this question?










share|cite|improve this question









New contributor




Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.























    up vote
    1
    down vote

    favorite
    2












    $displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$



    I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.



    How should I do or approach this question?










    share|cite|improve this question









    New contributor




    Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.





















      up vote
      1
      down vote

      favorite
      2









      up vote
      1
      down vote

      favorite
      2






      2





      $displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$



      I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.



      How should I do or approach this question?










      share|cite|improve this question









      New contributor




      Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      $displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$



      I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.



      How should I do or approach this question?







      integration






      share|cite|improve this question









      New contributor




      Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 36 mins ago





















      New contributor




      Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 42 mins ago









      Football Life

      526




      526




      New contributor




      Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Football Life is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          8
          down vote













          $ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$



          Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$



          $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$



          $implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$



          $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]



          $implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$



          We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.



          $displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$



          Let $u = x implies du = dx$



          And $dv = x^m-1(1-x^m)^n dx$



          Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$



          $displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$



          $displaystyle int_0^1x^m(1-x^m)^n dx$



          $=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$



          $= dfracI_n+1m(n+1)$



          Substituting this result into [*]



          $I_n+1 = I_n - dfracI_n+1m(n+1)$



          $implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$



          $implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$



          Putting $m = 50$ and $n = 100$, we have



          $displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$






          share|cite|improve this answer



























            up vote
            3
            down vote













            Let $a$, $b>0$. Then, substituting $t=x^a$,
            $$I_a,b=
            int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$

            where $B$ denotes the Beta function. But the beta function is expressible
            in terms of the Gamma function so that
            $$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$



            Therefore
            $$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
            Gamma(1/a+b+1)=frac1/a+b+1b+1.$$

            Now let $a=50$ and $b=100$.






            share|cite|improve this answer




















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              Football Life is a new contributor. Be nice, and check out our Code of Conduct.









               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2952258%2fhow-to-solve-this-following-integral%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              8
              down vote













              $ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$



              Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$



              $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$



              $implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$



              $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]



              $implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$



              We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.



              $displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$



              Let $u = x implies du = dx$



              And $dv = x^m-1(1-x^m)^n dx$



              Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$



              $displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$



              $displaystyle int_0^1x^m(1-x^m)^n dx$



              $=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$



              $= dfracI_n+1m(n+1)$



              Substituting this result into [*]



              $I_n+1 = I_n - dfracI_n+1m(n+1)$



              $implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$



              $implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$



              Putting $m = 50$ and $n = 100$, we have



              $displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$






              share|cite|improve this answer
























                up vote
                8
                down vote













                $ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$



                Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$



                $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$



                $implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$



                $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]



                $implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$



                We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.



                $displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$



                Let $u = x implies du = dx$



                And $dv = x^m-1(1-x^m)^n dx$



                Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$



                $displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$



                $displaystyle int_0^1x^m(1-x^m)^n dx$



                $=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$



                $= dfracI_n+1m(n+1)$



                Substituting this result into [*]



                $I_n+1 = I_n - dfracI_n+1m(n+1)$



                $implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$



                $implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$



                Putting $m = 50$ and $n = 100$, we have



                $displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$






                share|cite|improve this answer






















                  up vote
                  8
                  down vote










                  up vote
                  8
                  down vote









                  $ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$



                  Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$



                  $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$



                  $implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$



                  $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]



                  $implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$



                  We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.



                  $displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$



                  Let $u = x implies du = dx$



                  And $dv = x^m-1(1-x^m)^n dx$



                  Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$



                  $displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$



                  $displaystyle int_0^1x^m(1-x^m)^n dx$



                  $=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$



                  $= dfracI_n+1m(n+1)$



                  Substituting this result into [*]



                  $I_n+1 = I_n - dfracI_n+1m(n+1)$



                  $implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$



                  $implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$



                  Putting $m = 50$ and $n = 100$, we have



                  $displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$






                  share|cite|improve this answer












                  $ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$



                  Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$



                  $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$



                  $implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$



                  $implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]



                  $implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$



                  We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.



                  $displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$



                  Let $u = x implies du = dx$



                  And $dv = x^m-1(1-x^m)^n dx$



                  Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$



                  $displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$



                  $displaystyle int_0^1x^m(1-x^m)^n dx$



                  $=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$



                  $= dfracI_n+1m(n+1)$



                  Substituting this result into [*]



                  $I_n+1 = I_n - dfracI_n+1m(n+1)$



                  $implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$



                  $implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$



                  Putting $m = 50$ and $n = 100$, we have



                  $displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 37 mins ago









                  Pradyuman Dixit

                  60610




                  60610




















                      up vote
                      3
                      down vote













                      Let $a$, $b>0$. Then, substituting $t=x^a$,
                      $$I_a,b=
                      int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$

                      where $B$ denotes the Beta function. But the beta function is expressible
                      in terms of the Gamma function so that
                      $$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$



                      Therefore
                      $$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
                      Gamma(1/a+b+1)=frac1/a+b+1b+1.$$

                      Now let $a=50$ and $b=100$.






                      share|cite|improve this answer
























                        up vote
                        3
                        down vote













                        Let $a$, $b>0$. Then, substituting $t=x^a$,
                        $$I_a,b=
                        int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$

                        where $B$ denotes the Beta function. But the beta function is expressible
                        in terms of the Gamma function so that
                        $$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$



                        Therefore
                        $$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
                        Gamma(1/a+b+1)=frac1/a+b+1b+1.$$

                        Now let $a=50$ and $b=100$.






                        share|cite|improve this answer






















                          up vote
                          3
                          down vote










                          up vote
                          3
                          down vote









                          Let $a$, $b>0$. Then, substituting $t=x^a$,
                          $$I_a,b=
                          int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$

                          where $B$ denotes the Beta function. But the beta function is expressible
                          in terms of the Gamma function so that
                          $$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$



                          Therefore
                          $$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
                          Gamma(1/a+b+1)=frac1/a+b+1b+1.$$

                          Now let $a=50$ and $b=100$.






                          share|cite|improve this answer












                          Let $a$, $b>0$. Then, substituting $t=x^a$,
                          $$I_a,b=
                          int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$

                          where $B$ denotes the Beta function. But the beta function is expressible
                          in terms of the Gamma function so that
                          $$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$



                          Therefore
                          $$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
                          Gamma(1/a+b+1)=frac1/a+b+1b+1.$$

                          Now let $a=50$ and $b=100$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 24 mins ago









                          Lord Shark the Unknown

                          91.9k955118




                          91.9k955118




















                              Football Life is a new contributor. Be nice, and check out our Code of Conduct.









                               

                              draft saved


                              draft discarded


















                              Football Life is a new contributor. Be nice, and check out our Code of Conduct.












                              Football Life is a new contributor. Be nice, and check out our Code of Conduct.











                              Football Life is a new contributor. Be nice, and check out our Code of Conduct.













                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2952258%2fhow-to-solve-this-following-integral%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What does second last employer means? [closed]

                              Installing NextGIS Connect into QGIS 3?

                              One-line joke