How to solve this following integral?
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$
I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.
How should I do or approach this question?
integration
New contributor
add a comment |Â
up vote
1
down vote
favorite
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$
I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.
How should I do or approach this question?
integration
New contributor
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$
I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.
How should I do or approach this question?
integration
New contributor
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx =$ $ ?$
I tried putting $x=sin(a)$ but I could do nothing about the 100 and 101 powers, they made the integration not solvable for me.
How should I do or approach this question?
integration
integration
New contributor
New contributor
edited 36 mins ago
New contributor
asked 42 mins ago
Football Life
526
526
New contributor
New contributor
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
8
down vote
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
add a comment |Â
up vote
3
down vote
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
8
down vote
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
add a comment |Â
up vote
8
down vote
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
add a comment |Â
up vote
8
down vote
up vote
8
down vote
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
$ dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx$
Let $displaystyle I_n = int_0^1 (1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n+1dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)(1-x^m)^n dx$
$implies displaystyle I_n+1 = int_0^1 (1-x^m)^n dx- int_0^1x^m(1-x^m)^n dx$ ...[*]
$implies displaystyle I_n+1 = I_n- int_0^1x^m(1-x^m)^n dx$
We will integrate $displaystyle int_0^1x^m(1-x^m)^n dx$ via integration by parts. Watch closely, this is a little tricky.
$displaystyle int_0^1x^m(1-x^m)^n dx=int_0^1xcdot x^m-1(1-x^m)^ndx$
Let $u = x implies du = dx$
And $dv = x^m-1(1-x^m)^n dx$
Let $y = (1-x^m) implies dy = -mx^m-1 dx implies x^m-1 dx = -dfracdym$
$displaystyle v = intx^m-1(1-x^m)^n dx = int-dfracy^nmdy = dfrac-y^n+1m(n+1)=dfrac-(1-x^m)^n+1m(n+1)$
$displaystyle int_0^1x^m(1-x^m)^n dx$
$=displaystyle left[-dfracx(1-x^m)^n+1m(n+1)right]_0^1+dfrac1m(n+1)int_0^1(1-x^m)^n+1dx$
$= dfracI_n+1m(n+1)$
Substituting this result into [*]
$I_n+1 = I_n - dfracI_n+1m(n+1)$
$implies left[1+dfrac1m(n+1)right]=dfracI_nI_n+1$
$implies dfracI_nI_n+1 = dfracm(n+1)+1m(n+1)$
Putting $m = 50$ and $n = 100$, we have
$displaystyle dfracint_0^1(1-x^50)^100dxint_0^1(1-x^50)^101dx=dfrac50times101+150times 101=dfrac50515050$
answered 37 mins ago
Pradyuman Dixit
60610
60610
add a comment |Â
add a comment |Â
up vote
3
down vote
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
add a comment |Â
up vote
3
down vote
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
Let $a$, $b>0$. Then, substituting $t=x^a$,
$$I_a,b=
int_0^1(1-x^a)^b,dx=frac1aint_0^1(1-t)^bt^1/a-1,dt=fracB(b+1,1/a)a$$
where $B$ denotes the Beta function. But the beta function is expressible
in terms of the Gamma function so that
$$fracB(b+1,1/a)a=fracGamma(1/a)Gamma(b+1)aGamma(1/a+b+1).$$
Therefore
$$fracI_a,bI_a,b+1=fracGamma(b+1)Gamma(1/a+b+2)Gamma(b+2)
Gamma(1/a+b+1)=frac1/a+b+1b+1.$$
Now let $a=50$ and $b=100$.
answered 24 mins ago
Lord Shark the Unknown
91.9k955118
91.9k955118
add a comment |Â
add a comment |Â
Football Life is a new contributor. Be nice, and check out our Code of Conduct.
Football Life is a new contributor. Be nice, and check out our Code of Conduct.
Football Life is a new contributor. Be nice, and check out our Code of Conduct.
Football Life is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2952258%2fhow-to-solve-this-following-integral%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password