How to delete two specific columns in a matrix in mathematica [duplicate]

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
7
down vote

favorite













This question already has an answer here:



  • Correct way to remove matrix columns?

    3 answers



Say I have a matrix of random integers, which is given by



A=RandomInteger[25, 9, 11]


How can specific columns of this matrix (say 4th and 7th columns) be deleted?







share|improve this question












marked as duplicate by corey979, José Antonio Díaz Navas, MikeLimaOscar, Öskå, kirma yesterday


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    Delete[Transpose@A, 4, 7] // Transpose
    – Okkes Dulgerci
    Sep 6 at 12:51






  • 1




    mA[[All, Complement[Range[11], 4, 7]]]
    – Alan
    Sep 6 at 13:18














up vote
7
down vote

favorite













This question already has an answer here:



  • Correct way to remove matrix columns?

    3 answers



Say I have a matrix of random integers, which is given by



A=RandomInteger[25, 9, 11]


How can specific columns of this matrix (say 4th and 7th columns) be deleted?







share|improve this question












marked as duplicate by corey979, José Antonio Díaz Navas, MikeLimaOscar, Öskå, kirma yesterday


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.










  • 1




    Delete[Transpose@A, 4, 7] // Transpose
    – Okkes Dulgerci
    Sep 6 at 12:51






  • 1




    mA[[All, Complement[Range[11], 4, 7]]]
    – Alan
    Sep 6 at 13:18












up vote
7
down vote

favorite









up vote
7
down vote

favorite












This question already has an answer here:



  • Correct way to remove matrix columns?

    3 answers



Say I have a matrix of random integers, which is given by



A=RandomInteger[25, 9, 11]


How can specific columns of this matrix (say 4th and 7th columns) be deleted?







share|improve this question













This question already has an answer here:



  • Correct way to remove matrix columns?

    3 answers



Say I have a matrix of random integers, which is given by



A=RandomInteger[25, 9, 11]


How can specific columns of this matrix (say 4th and 7th columns) be deleted?





This question already has an answer here:



  • Correct way to remove matrix columns?

    3 answers









share|improve this question











share|improve this question




share|improve this question










asked Sep 6 at 11:20









Soumyajit Roy

906




906




marked as duplicate by corey979, José Antonio Díaz Navas, MikeLimaOscar, Öskå, kirma yesterday


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.






marked as duplicate by corey979, José Antonio Díaz Navas, MikeLimaOscar, Öskå, kirma yesterday


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









  • 1




    Delete[Transpose@A, 4, 7] // Transpose
    – Okkes Dulgerci
    Sep 6 at 12:51






  • 1




    mA[[All, Complement[Range[11], 4, 7]]]
    – Alan
    Sep 6 at 13:18












  • 1




    Delete[Transpose@A, 4, 7] // Transpose
    – Okkes Dulgerci
    Sep 6 at 12:51






  • 1




    mA[[All, Complement[Range[11], 4, 7]]]
    – Alan
    Sep 6 at 13:18







1




1




Delete[Transpose@A, 4, 7] // Transpose
– Okkes Dulgerci
Sep 6 at 12:51




Delete[Transpose@A, 4, 7] // Transpose
– Okkes Dulgerci
Sep 6 at 12:51




1




1




mA[[All, Complement[Range[11], 4, 7]]]
– Alan
Sep 6 at 13:18




mA[[All, Complement[Range[11], 4, 7]]]
– Alan
Sep 6 at 13:18










7 Answers
7






active

oldest

votes

















up vote
7
down vote













I learned this method long time ago from Mr Wizard answer, it works well. But there are many other ways



a = RandomInteger[25, 9, 11];
a // MatrixForm


Mathematica graphics



ReplacePart[a, _, 4, _, 7 :> Sequence];
MatrixForm[%]


Mathematica graphics






share|improve this answer




















  • Some variations on this theme. Mr.Wizard's (## &) can be substituted for Sequence. In recent versions of Mathematica, substituting Nothing works too.
    – m_goldberg
    Sep 6 at 17:56






  • 1




    Again, my obligatory warning: This method unpacks arrays.
    – Henrik Schumacher
    Sep 6 at 19:48

















up vote
7
down vote













The fasted way to do this is to use Part and construct the indices you need to take using Complement:



dropColumns[mat_?MatrixQ, columns : __Integer] := With[
columnsToTake = Complement[
Range[Dimensions[mat][[2]]],
columns
]
,
mat[[All, columnsToTake]]
];
a = RandomInteger[25, 9, 11];
a // MatrixForm
dropColumns[a, 2, 5] // MatrixForm





share|improve this answer





























    up vote
    4
    down vote













    A = RandomInteger[25, 9, 11];
    A // MatrixForm
    DeleteCol[Matrix_, indexlist_] :=
    Block[internalMatrix = Matrix, i, k = 0,
    internallist = SortBy[indexlist, Smaller],
    For[i = 1, i <= Length[internallist], i++,
    internalMatrix =
    Delete[Transpose[internalMatrix], internallist[[i]] - k];
    internalMatrix = Transpose[internalMatrix];
    k++;
    ];
    internalMatrix
    ];
    DeleteCol[A, 4, 7];
    % // MatrixForm
    DeleteCol[A, 7, 4];
    % // MatrixForm





    share|improve this answer






















    • How can you delete two or more columns?
      – Okkes Dulgerci
      Sep 6 at 13:25










    • @Okkes Dulgerci now it's possible to delete two or more columns.
      – Diogo
      Sep 6 at 17:28

















    up vote
    2
    down vote













    Here is another way to do it. I assume that columns you want delete is ordered. i.e. 4,7 will work but 7,4 won't.



     SeedRandom@2;
    A = RandomInteger[25, 9, 11];
    MatrixForm@A



    $A=left(
    beginarrayccccccccccc
    23 & 3 & 18 & 11 & 10 & 17 & 8 & 3 & 8 & 0 & 19 \
    9 & 23 & 25 & 24 & 14 & 4 & 3 & 4 & 12 & 12 & 8 \
    8 & 18 & 6 & 3 & 1 & 14 & 21 & 4 & 14 & 10 & 20 \
    22 & 8 & 10 & 20 & 19 & 1 & 9 & 12 & 0 & 19 & 11 \
    25 & 10 & 8 & 7 & 18 & 7 & 9 & 23 & 1 & 6 & 15 \
    12 & 1 & 0 & 14 & 19 & 12 & 2 & 5 & 3 & 7 & 5 \
    23 & 24 & 1 & 14 & 3 & 2 & 22 & 16 & 21 & 4 & 11 \
    4 & 2 & 3 & 20 & 24 & 8 & 10 & 3 & 6 & 12 & 19 \
    20 & 24 & 6 & 1 & 13 & 10 & 8 & 21 & 5 & 6 & 21 \
    endarray
    right)$




    deleteColumns[mat_?MatrixQ, col_] := 
    With[column = col - Range[0, Length@col - 1],
    Fold[Delete[#, #2] &, Transpose@A, column] // Transpose]
    deleteColumns[A, 4, 7, 10] // MatrixForm



    $A=left(
    beginarraycccccccc
    23 & 3 & 18 & 10 & 17 & 3 & 8 & 19 \
    9 & 23 & 25 & 14 & 4 & 4 & 12 & 8 \
    8 & 18 & 6 & 1 & 14 & 4 & 14 & 20 \
    22 & 8 & 10 & 19 & 1 & 12 & 0 & 11 \
    25 & 10 & 8 & 18 & 7 & 23 & 1 & 15 \
    12 & 1 & 0 & 19 & 12 & 5 & 3 & 5 \
    23 & 24 & 1 & 3 & 2 & 16 & 21 & 11 \
    4 & 2 & 3 & 24 & 8 & 3 & 6 & 19 \
    20 & 24 & 6 & 13 & 10 & 21 & 5 & 21 \
    endarray
    right)$







    share|improve this answer





























      up vote
      2
      down vote













      I am confused by the complexity of many of these responses. The single command



      Drop[A, None, 4,7,3]



      is sufficient to remove columns $4$ and $7$, in steps of $3$ (so as not to remove columms $5$ and $6$). If you wanted to remove more than two columns that are not separated by an equal number of columns, then you would need to use Drop more than once, starting from the rightmost column to be removed; e.g., to remove columns $1$, $3$, and $9$, you could just do



      Drop[Drop[A, None, 9], None, 1,3,2]



      or equivalently,



      Drop[Drop[A, None, 3,9,6], None, 1]



      If you had an arbitrary sorted list of column indices to remove, which we might call c, then Fold is trivially applied:



      Fold[Drop[#1, None, #2]&, A, Reverse[c]]






      share|improve this answer






















      • I considered Drop, but because you cannot give give it an arbitrary list of column indices, I decided that Part is more suited for the job. Especially because repeated calls to Drop is going to be slow for large matrices.
        – Sjoerd Smit
        Sep 7 at 8:15


















      up vote
      1
      down vote













      MapThread[Delete, A, ConstantArray[4, 7, Length[A]]]





      share|improve this answer



























        up vote
        1
        down vote













        You can also use a combination of Fold and Drop:



        ClearAll[dropCols1]
        dropCols1 = Fold[Drop[#, None, #2] &, #, List /@ Reverse @ Sort[#2]] &;


        Examples:



        m = Array[Subscript[a, ##] &, 9, 9];

        dropCols1[m, 4, 7] // MatrixForm // TeXForm



        $smallleft(
        beginarrayccccccc
        a_1,1 & a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
        a_2,1 & a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
        a_3,1 & a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
        a_4,1 & a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
        a_5,1 & a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
        a_6,1 & a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
        a_7,1 & a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
        a_8,1 & a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
        a_9,1 & a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
        endarray
        right)$




        dropCols1[m, 4, 7, 1] // MatrixForm // TeXForm



        $smallleft(
        beginarraycccccc
        a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
        a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
        a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
        a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
        a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
        a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
        a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
        a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
        a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
        endarray
        right)$




        Alternatively, (1) assign ##& (or Nothing in versions 10+) to the desired columns (dropCols2) or (2) use a combination of MapAt and ##&& (dropCols3):



        ClearAll[dropCols2, dropCols3]
        dropCols2 = Module[a = #, a[[All, #2]] = ## &; a] &;
        dropCols3 = MapAt[## & &, #, All, #2] &;

        Equal @@ (#[m, 4, 7] & /@ dropCols1, dropCols2, dropCols3)



        True




        Equal @@ (#[m, 4, 7, 1] & /@ dropCols1, dropCols2, dropCols3)



        True







        share|improve this answer





























          7 Answers
          7






          active

          oldest

          votes








          7 Answers
          7






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          7
          down vote













          I learned this method long time ago from Mr Wizard answer, it works well. But there are many other ways



          a = RandomInteger[25, 9, 11];
          a // MatrixForm


          Mathematica graphics



          ReplacePart[a, _, 4, _, 7 :> Sequence];
          MatrixForm[%]


          Mathematica graphics






          share|improve this answer




















          • Some variations on this theme. Mr.Wizard's (## &) can be substituted for Sequence. In recent versions of Mathematica, substituting Nothing works too.
            – m_goldberg
            Sep 6 at 17:56






          • 1




            Again, my obligatory warning: This method unpacks arrays.
            – Henrik Schumacher
            Sep 6 at 19:48














          up vote
          7
          down vote













          I learned this method long time ago from Mr Wizard answer, it works well. But there are many other ways



          a = RandomInteger[25, 9, 11];
          a // MatrixForm


          Mathematica graphics



          ReplacePart[a, _, 4, _, 7 :> Sequence];
          MatrixForm[%]


          Mathematica graphics






          share|improve this answer




















          • Some variations on this theme. Mr.Wizard's (## &) can be substituted for Sequence. In recent versions of Mathematica, substituting Nothing works too.
            – m_goldberg
            Sep 6 at 17:56






          • 1




            Again, my obligatory warning: This method unpacks arrays.
            – Henrik Schumacher
            Sep 6 at 19:48












          up vote
          7
          down vote










          up vote
          7
          down vote









          I learned this method long time ago from Mr Wizard answer, it works well. But there are many other ways



          a = RandomInteger[25, 9, 11];
          a // MatrixForm


          Mathematica graphics



          ReplacePart[a, _, 4, _, 7 :> Sequence];
          MatrixForm[%]


          Mathematica graphics






          share|improve this answer












          I learned this method long time ago from Mr Wizard answer, it works well. But there are many other ways



          a = RandomInteger[25, 9, 11];
          a // MatrixForm


          Mathematica graphics



          ReplacePart[a, _, 4, _, 7 :> Sequence];
          MatrixForm[%]


          Mathematica graphics







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Sep 6 at 11:37









          Nasser

          56.7k485203




          56.7k485203











          • Some variations on this theme. Mr.Wizard's (## &) can be substituted for Sequence. In recent versions of Mathematica, substituting Nothing works too.
            – m_goldberg
            Sep 6 at 17:56






          • 1




            Again, my obligatory warning: This method unpacks arrays.
            – Henrik Schumacher
            Sep 6 at 19:48
















          • Some variations on this theme. Mr.Wizard's (## &) can be substituted for Sequence. In recent versions of Mathematica, substituting Nothing works too.
            – m_goldberg
            Sep 6 at 17:56






          • 1




            Again, my obligatory warning: This method unpacks arrays.
            – Henrik Schumacher
            Sep 6 at 19:48















          Some variations on this theme. Mr.Wizard's (## &) can be substituted for Sequence. In recent versions of Mathematica, substituting Nothing works too.
          – m_goldberg
          Sep 6 at 17:56




          Some variations on this theme. Mr.Wizard's (## &) can be substituted for Sequence. In recent versions of Mathematica, substituting Nothing works too.
          – m_goldberg
          Sep 6 at 17:56




          1




          1




          Again, my obligatory warning: This method unpacks arrays.
          – Henrik Schumacher
          Sep 6 at 19:48




          Again, my obligatory warning: This method unpacks arrays.
          – Henrik Schumacher
          Sep 6 at 19:48










          up vote
          7
          down vote













          The fasted way to do this is to use Part and construct the indices you need to take using Complement:



          dropColumns[mat_?MatrixQ, columns : __Integer] := With[
          columnsToTake = Complement[
          Range[Dimensions[mat][[2]]],
          columns
          ]
          ,
          mat[[All, columnsToTake]]
          ];
          a = RandomInteger[25, 9, 11];
          a // MatrixForm
          dropColumns[a, 2, 5] // MatrixForm





          share|improve this answer


























            up vote
            7
            down vote













            The fasted way to do this is to use Part and construct the indices you need to take using Complement:



            dropColumns[mat_?MatrixQ, columns : __Integer] := With[
            columnsToTake = Complement[
            Range[Dimensions[mat][[2]]],
            columns
            ]
            ,
            mat[[All, columnsToTake]]
            ];
            a = RandomInteger[25, 9, 11];
            a // MatrixForm
            dropColumns[a, 2, 5] // MatrixForm





            share|improve this answer
























              up vote
              7
              down vote










              up vote
              7
              down vote









              The fasted way to do this is to use Part and construct the indices you need to take using Complement:



              dropColumns[mat_?MatrixQ, columns : __Integer] := With[
              columnsToTake = Complement[
              Range[Dimensions[mat][[2]]],
              columns
              ]
              ,
              mat[[All, columnsToTake]]
              ];
              a = RandomInteger[25, 9, 11];
              a // MatrixForm
              dropColumns[a, 2, 5] // MatrixForm





              share|improve this answer














              The fasted way to do this is to use Part and construct the indices you need to take using Complement:



              dropColumns[mat_?MatrixQ, columns : __Integer] := With[
              columnsToTake = Complement[
              Range[Dimensions[mat][[2]]],
              columns
              ]
              ,
              mat[[All, columnsToTake]]
              ];
              a = RandomInteger[25, 9, 11];
              a // MatrixForm
              dropColumns[a, 2, 5] // MatrixForm






              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited Sep 6 at 12:49









              Okkes Dulgerci

              3,0641615




              3,0641615










              answered Sep 6 at 12:02









              Sjoerd Smit

              2,490314




              2,490314




















                  up vote
                  4
                  down vote













                  A = RandomInteger[25, 9, 11];
                  A // MatrixForm
                  DeleteCol[Matrix_, indexlist_] :=
                  Block[internalMatrix = Matrix, i, k = 0,
                  internallist = SortBy[indexlist, Smaller],
                  For[i = 1, i <= Length[internallist], i++,
                  internalMatrix =
                  Delete[Transpose[internalMatrix], internallist[[i]] - k];
                  internalMatrix = Transpose[internalMatrix];
                  k++;
                  ];
                  internalMatrix
                  ];
                  DeleteCol[A, 4, 7];
                  % // MatrixForm
                  DeleteCol[A, 7, 4];
                  % // MatrixForm





                  share|improve this answer






















                  • How can you delete two or more columns?
                    – Okkes Dulgerci
                    Sep 6 at 13:25










                  • @Okkes Dulgerci now it's possible to delete two or more columns.
                    – Diogo
                    Sep 6 at 17:28














                  up vote
                  4
                  down vote













                  A = RandomInteger[25, 9, 11];
                  A // MatrixForm
                  DeleteCol[Matrix_, indexlist_] :=
                  Block[internalMatrix = Matrix, i, k = 0,
                  internallist = SortBy[indexlist, Smaller],
                  For[i = 1, i <= Length[internallist], i++,
                  internalMatrix =
                  Delete[Transpose[internalMatrix], internallist[[i]] - k];
                  internalMatrix = Transpose[internalMatrix];
                  k++;
                  ];
                  internalMatrix
                  ];
                  DeleteCol[A, 4, 7];
                  % // MatrixForm
                  DeleteCol[A, 7, 4];
                  % // MatrixForm





                  share|improve this answer






















                  • How can you delete two or more columns?
                    – Okkes Dulgerci
                    Sep 6 at 13:25










                  • @Okkes Dulgerci now it's possible to delete two or more columns.
                    – Diogo
                    Sep 6 at 17:28












                  up vote
                  4
                  down vote










                  up vote
                  4
                  down vote









                  A = RandomInteger[25, 9, 11];
                  A // MatrixForm
                  DeleteCol[Matrix_, indexlist_] :=
                  Block[internalMatrix = Matrix, i, k = 0,
                  internallist = SortBy[indexlist, Smaller],
                  For[i = 1, i <= Length[internallist], i++,
                  internalMatrix =
                  Delete[Transpose[internalMatrix], internallist[[i]] - k];
                  internalMatrix = Transpose[internalMatrix];
                  k++;
                  ];
                  internalMatrix
                  ];
                  DeleteCol[A, 4, 7];
                  % // MatrixForm
                  DeleteCol[A, 7, 4];
                  % // MatrixForm





                  share|improve this answer














                  A = RandomInteger[25, 9, 11];
                  A // MatrixForm
                  DeleteCol[Matrix_, indexlist_] :=
                  Block[internalMatrix = Matrix, i, k = 0,
                  internallist = SortBy[indexlist, Smaller],
                  For[i = 1, i <= Length[internallist], i++,
                  internalMatrix =
                  Delete[Transpose[internalMatrix], internallist[[i]] - k];
                  internalMatrix = Transpose[internalMatrix];
                  k++;
                  ];
                  internalMatrix
                  ];
                  DeleteCol[A, 4, 7];
                  % // MatrixForm
                  DeleteCol[A, 7, 4];
                  % // MatrixForm






                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Sep 6 at 18:15

























                  answered Sep 6 at 12:08









                  Diogo

                  1,686416




                  1,686416











                  • How can you delete two or more columns?
                    – Okkes Dulgerci
                    Sep 6 at 13:25










                  • @Okkes Dulgerci now it's possible to delete two or more columns.
                    – Diogo
                    Sep 6 at 17:28
















                  • How can you delete two or more columns?
                    – Okkes Dulgerci
                    Sep 6 at 13:25










                  • @Okkes Dulgerci now it's possible to delete two or more columns.
                    – Diogo
                    Sep 6 at 17:28















                  How can you delete two or more columns?
                  – Okkes Dulgerci
                  Sep 6 at 13:25




                  How can you delete two or more columns?
                  – Okkes Dulgerci
                  Sep 6 at 13:25












                  @Okkes Dulgerci now it's possible to delete two or more columns.
                  – Diogo
                  Sep 6 at 17:28




                  @Okkes Dulgerci now it's possible to delete two or more columns.
                  – Diogo
                  Sep 6 at 17:28










                  up vote
                  2
                  down vote













                  Here is another way to do it. I assume that columns you want delete is ordered. i.e. 4,7 will work but 7,4 won't.



                   SeedRandom@2;
                  A = RandomInteger[25, 9, 11];
                  MatrixForm@A



                  $A=left(
                  beginarrayccccccccccc
                  23 & 3 & 18 & 11 & 10 & 17 & 8 & 3 & 8 & 0 & 19 \
                  9 & 23 & 25 & 24 & 14 & 4 & 3 & 4 & 12 & 12 & 8 \
                  8 & 18 & 6 & 3 & 1 & 14 & 21 & 4 & 14 & 10 & 20 \
                  22 & 8 & 10 & 20 & 19 & 1 & 9 & 12 & 0 & 19 & 11 \
                  25 & 10 & 8 & 7 & 18 & 7 & 9 & 23 & 1 & 6 & 15 \
                  12 & 1 & 0 & 14 & 19 & 12 & 2 & 5 & 3 & 7 & 5 \
                  23 & 24 & 1 & 14 & 3 & 2 & 22 & 16 & 21 & 4 & 11 \
                  4 & 2 & 3 & 20 & 24 & 8 & 10 & 3 & 6 & 12 & 19 \
                  20 & 24 & 6 & 1 & 13 & 10 & 8 & 21 & 5 & 6 & 21 \
                  endarray
                  right)$




                  deleteColumns[mat_?MatrixQ, col_] := 
                  With[column = col - Range[0, Length@col - 1],
                  Fold[Delete[#, #2] &, Transpose@A, column] // Transpose]
                  deleteColumns[A, 4, 7, 10] // MatrixForm



                  $A=left(
                  beginarraycccccccc
                  23 & 3 & 18 & 10 & 17 & 3 & 8 & 19 \
                  9 & 23 & 25 & 14 & 4 & 4 & 12 & 8 \
                  8 & 18 & 6 & 1 & 14 & 4 & 14 & 20 \
                  22 & 8 & 10 & 19 & 1 & 12 & 0 & 11 \
                  25 & 10 & 8 & 18 & 7 & 23 & 1 & 15 \
                  12 & 1 & 0 & 19 & 12 & 5 & 3 & 5 \
                  23 & 24 & 1 & 3 & 2 & 16 & 21 & 11 \
                  4 & 2 & 3 & 24 & 8 & 3 & 6 & 19 \
                  20 & 24 & 6 & 13 & 10 & 21 & 5 & 21 \
                  endarray
                  right)$







                  share|improve this answer


























                    up vote
                    2
                    down vote













                    Here is another way to do it. I assume that columns you want delete is ordered. i.e. 4,7 will work but 7,4 won't.



                     SeedRandom@2;
                    A = RandomInteger[25, 9, 11];
                    MatrixForm@A



                    $A=left(
                    beginarrayccccccccccc
                    23 & 3 & 18 & 11 & 10 & 17 & 8 & 3 & 8 & 0 & 19 \
                    9 & 23 & 25 & 24 & 14 & 4 & 3 & 4 & 12 & 12 & 8 \
                    8 & 18 & 6 & 3 & 1 & 14 & 21 & 4 & 14 & 10 & 20 \
                    22 & 8 & 10 & 20 & 19 & 1 & 9 & 12 & 0 & 19 & 11 \
                    25 & 10 & 8 & 7 & 18 & 7 & 9 & 23 & 1 & 6 & 15 \
                    12 & 1 & 0 & 14 & 19 & 12 & 2 & 5 & 3 & 7 & 5 \
                    23 & 24 & 1 & 14 & 3 & 2 & 22 & 16 & 21 & 4 & 11 \
                    4 & 2 & 3 & 20 & 24 & 8 & 10 & 3 & 6 & 12 & 19 \
                    20 & 24 & 6 & 1 & 13 & 10 & 8 & 21 & 5 & 6 & 21 \
                    endarray
                    right)$




                    deleteColumns[mat_?MatrixQ, col_] := 
                    With[column = col - Range[0, Length@col - 1],
                    Fold[Delete[#, #2] &, Transpose@A, column] // Transpose]
                    deleteColumns[A, 4, 7, 10] // MatrixForm



                    $A=left(
                    beginarraycccccccc
                    23 & 3 & 18 & 10 & 17 & 3 & 8 & 19 \
                    9 & 23 & 25 & 14 & 4 & 4 & 12 & 8 \
                    8 & 18 & 6 & 1 & 14 & 4 & 14 & 20 \
                    22 & 8 & 10 & 19 & 1 & 12 & 0 & 11 \
                    25 & 10 & 8 & 18 & 7 & 23 & 1 & 15 \
                    12 & 1 & 0 & 19 & 12 & 5 & 3 & 5 \
                    23 & 24 & 1 & 3 & 2 & 16 & 21 & 11 \
                    4 & 2 & 3 & 24 & 8 & 3 & 6 & 19 \
                    20 & 24 & 6 & 13 & 10 & 21 & 5 & 21 \
                    endarray
                    right)$







                    share|improve this answer
























                      up vote
                      2
                      down vote










                      up vote
                      2
                      down vote









                      Here is another way to do it. I assume that columns you want delete is ordered. i.e. 4,7 will work but 7,4 won't.



                       SeedRandom@2;
                      A = RandomInteger[25, 9, 11];
                      MatrixForm@A



                      $A=left(
                      beginarrayccccccccccc
                      23 & 3 & 18 & 11 & 10 & 17 & 8 & 3 & 8 & 0 & 19 \
                      9 & 23 & 25 & 24 & 14 & 4 & 3 & 4 & 12 & 12 & 8 \
                      8 & 18 & 6 & 3 & 1 & 14 & 21 & 4 & 14 & 10 & 20 \
                      22 & 8 & 10 & 20 & 19 & 1 & 9 & 12 & 0 & 19 & 11 \
                      25 & 10 & 8 & 7 & 18 & 7 & 9 & 23 & 1 & 6 & 15 \
                      12 & 1 & 0 & 14 & 19 & 12 & 2 & 5 & 3 & 7 & 5 \
                      23 & 24 & 1 & 14 & 3 & 2 & 22 & 16 & 21 & 4 & 11 \
                      4 & 2 & 3 & 20 & 24 & 8 & 10 & 3 & 6 & 12 & 19 \
                      20 & 24 & 6 & 1 & 13 & 10 & 8 & 21 & 5 & 6 & 21 \
                      endarray
                      right)$




                      deleteColumns[mat_?MatrixQ, col_] := 
                      With[column = col - Range[0, Length@col - 1],
                      Fold[Delete[#, #2] &, Transpose@A, column] // Transpose]
                      deleteColumns[A, 4, 7, 10] // MatrixForm



                      $A=left(
                      beginarraycccccccc
                      23 & 3 & 18 & 10 & 17 & 3 & 8 & 19 \
                      9 & 23 & 25 & 14 & 4 & 4 & 12 & 8 \
                      8 & 18 & 6 & 1 & 14 & 4 & 14 & 20 \
                      22 & 8 & 10 & 19 & 1 & 12 & 0 & 11 \
                      25 & 10 & 8 & 18 & 7 & 23 & 1 & 15 \
                      12 & 1 & 0 & 19 & 12 & 5 & 3 & 5 \
                      23 & 24 & 1 & 3 & 2 & 16 & 21 & 11 \
                      4 & 2 & 3 & 24 & 8 & 3 & 6 & 19 \
                      20 & 24 & 6 & 13 & 10 & 21 & 5 & 21 \
                      endarray
                      right)$







                      share|improve this answer














                      Here is another way to do it. I assume that columns you want delete is ordered. i.e. 4,7 will work but 7,4 won't.



                       SeedRandom@2;
                      A = RandomInteger[25, 9, 11];
                      MatrixForm@A



                      $A=left(
                      beginarrayccccccccccc
                      23 & 3 & 18 & 11 & 10 & 17 & 8 & 3 & 8 & 0 & 19 \
                      9 & 23 & 25 & 24 & 14 & 4 & 3 & 4 & 12 & 12 & 8 \
                      8 & 18 & 6 & 3 & 1 & 14 & 21 & 4 & 14 & 10 & 20 \
                      22 & 8 & 10 & 20 & 19 & 1 & 9 & 12 & 0 & 19 & 11 \
                      25 & 10 & 8 & 7 & 18 & 7 & 9 & 23 & 1 & 6 & 15 \
                      12 & 1 & 0 & 14 & 19 & 12 & 2 & 5 & 3 & 7 & 5 \
                      23 & 24 & 1 & 14 & 3 & 2 & 22 & 16 & 21 & 4 & 11 \
                      4 & 2 & 3 & 20 & 24 & 8 & 10 & 3 & 6 & 12 & 19 \
                      20 & 24 & 6 & 1 & 13 & 10 & 8 & 21 & 5 & 6 & 21 \
                      endarray
                      right)$




                      deleteColumns[mat_?MatrixQ, col_] := 
                      With[column = col - Range[0, Length@col - 1],
                      Fold[Delete[#, #2] &, Transpose@A, column] // Transpose]
                      deleteColumns[A, 4, 7, 10] // MatrixForm



                      $A=left(
                      beginarraycccccccc
                      23 & 3 & 18 & 10 & 17 & 3 & 8 & 19 \
                      9 & 23 & 25 & 14 & 4 & 4 & 12 & 8 \
                      8 & 18 & 6 & 1 & 14 & 4 & 14 & 20 \
                      22 & 8 & 10 & 19 & 1 & 12 & 0 & 11 \
                      25 & 10 & 8 & 18 & 7 & 23 & 1 & 15 \
                      12 & 1 & 0 & 19 & 12 & 5 & 3 & 5 \
                      23 & 24 & 1 & 3 & 2 & 16 & 21 & 11 \
                      4 & 2 & 3 & 24 & 8 & 3 & 6 & 19 \
                      20 & 24 & 6 & 13 & 10 & 21 & 5 & 21 \
                      endarray
                      right)$








                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited Sep 6 at 13:30

























                      answered Sep 6 at 13:17









                      Okkes Dulgerci

                      3,0641615




                      3,0641615




















                          up vote
                          2
                          down vote













                          I am confused by the complexity of many of these responses. The single command



                          Drop[A, None, 4,7,3]



                          is sufficient to remove columns $4$ and $7$, in steps of $3$ (so as not to remove columms $5$ and $6$). If you wanted to remove more than two columns that are not separated by an equal number of columns, then you would need to use Drop more than once, starting from the rightmost column to be removed; e.g., to remove columns $1$, $3$, and $9$, you could just do



                          Drop[Drop[A, None, 9], None, 1,3,2]



                          or equivalently,



                          Drop[Drop[A, None, 3,9,6], None, 1]



                          If you had an arbitrary sorted list of column indices to remove, which we might call c, then Fold is trivially applied:



                          Fold[Drop[#1, None, #2]&, A, Reverse[c]]






                          share|improve this answer






















                          • I considered Drop, but because you cannot give give it an arbitrary list of column indices, I decided that Part is more suited for the job. Especially because repeated calls to Drop is going to be slow for large matrices.
                            – Sjoerd Smit
                            Sep 7 at 8:15















                          up vote
                          2
                          down vote













                          I am confused by the complexity of many of these responses. The single command



                          Drop[A, None, 4,7,3]



                          is sufficient to remove columns $4$ and $7$, in steps of $3$ (so as not to remove columms $5$ and $6$). If you wanted to remove more than two columns that are not separated by an equal number of columns, then you would need to use Drop more than once, starting from the rightmost column to be removed; e.g., to remove columns $1$, $3$, and $9$, you could just do



                          Drop[Drop[A, None, 9], None, 1,3,2]



                          or equivalently,



                          Drop[Drop[A, None, 3,9,6], None, 1]



                          If you had an arbitrary sorted list of column indices to remove, which we might call c, then Fold is trivially applied:



                          Fold[Drop[#1, None, #2]&, A, Reverse[c]]






                          share|improve this answer






















                          • I considered Drop, but because you cannot give give it an arbitrary list of column indices, I decided that Part is more suited for the job. Especially because repeated calls to Drop is going to be slow for large matrices.
                            – Sjoerd Smit
                            Sep 7 at 8:15













                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          I am confused by the complexity of many of these responses. The single command



                          Drop[A, None, 4,7,3]



                          is sufficient to remove columns $4$ and $7$, in steps of $3$ (so as not to remove columms $5$ and $6$). If you wanted to remove more than two columns that are not separated by an equal number of columns, then you would need to use Drop more than once, starting from the rightmost column to be removed; e.g., to remove columns $1$, $3$, and $9$, you could just do



                          Drop[Drop[A, None, 9], None, 1,3,2]



                          or equivalently,



                          Drop[Drop[A, None, 3,9,6], None, 1]



                          If you had an arbitrary sorted list of column indices to remove, which we might call c, then Fold is trivially applied:



                          Fold[Drop[#1, None, #2]&, A, Reverse[c]]






                          share|improve this answer














                          I am confused by the complexity of many of these responses. The single command



                          Drop[A, None, 4,7,3]



                          is sufficient to remove columns $4$ and $7$, in steps of $3$ (so as not to remove columms $5$ and $6$). If you wanted to remove more than two columns that are not separated by an equal number of columns, then you would need to use Drop more than once, starting from the rightmost column to be removed; e.g., to remove columns $1$, $3$, and $9$, you could just do



                          Drop[Drop[A, None, 9], None, 1,3,2]



                          or equivalently,



                          Drop[Drop[A, None, 3,9,6], None, 1]



                          If you had an arbitrary sorted list of column indices to remove, which we might call c, then Fold is trivially applied:



                          Fold[Drop[#1, None, #2]&, A, Reverse[c]]







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited Sep 7 at 1:02

























                          answered Sep 7 at 0:57









                          heropup

                          1,529712




                          1,529712











                          • I considered Drop, but because you cannot give give it an arbitrary list of column indices, I decided that Part is more suited for the job. Especially because repeated calls to Drop is going to be slow for large matrices.
                            – Sjoerd Smit
                            Sep 7 at 8:15

















                          • I considered Drop, but because you cannot give give it an arbitrary list of column indices, I decided that Part is more suited for the job. Especially because repeated calls to Drop is going to be slow for large matrices.
                            – Sjoerd Smit
                            Sep 7 at 8:15
















                          I considered Drop, but because you cannot give give it an arbitrary list of column indices, I decided that Part is more suited for the job. Especially because repeated calls to Drop is going to be slow for large matrices.
                          – Sjoerd Smit
                          Sep 7 at 8:15





                          I considered Drop, but because you cannot give give it an arbitrary list of column indices, I decided that Part is more suited for the job. Especially because repeated calls to Drop is going to be slow for large matrices.
                          – Sjoerd Smit
                          Sep 7 at 8:15











                          up vote
                          1
                          down vote













                          MapThread[Delete, A, ConstantArray[4, 7, Length[A]]]





                          share|improve this answer
























                            up vote
                            1
                            down vote













                            MapThread[Delete, A, ConstantArray[4, 7, Length[A]]]





                            share|improve this answer






















                              up vote
                              1
                              down vote










                              up vote
                              1
                              down vote









                              MapThread[Delete, A, ConstantArray[4, 7, Length[A]]]





                              share|improve this answer












                              MapThread[Delete, A, ConstantArray[4, 7, Length[A]]]






                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered Sep 6 at 14:02









                              Chris Degnen

                              21.4k23281




                              21.4k23281




















                                  up vote
                                  1
                                  down vote













                                  You can also use a combination of Fold and Drop:



                                  ClearAll[dropCols1]
                                  dropCols1 = Fold[Drop[#, None, #2] &, #, List /@ Reverse @ Sort[#2]] &;


                                  Examples:



                                  m = Array[Subscript[a, ##] &, 9, 9];

                                  dropCols1[m, 4, 7] // MatrixForm // TeXForm



                                  $smallleft(
                                  beginarrayccccccc
                                  a_1,1 & a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
                                  a_2,1 & a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
                                  a_3,1 & a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
                                  a_4,1 & a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
                                  a_5,1 & a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
                                  a_6,1 & a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
                                  a_7,1 & a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
                                  a_8,1 & a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
                                  a_9,1 & a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
                                  endarray
                                  right)$




                                  dropCols1[m, 4, 7, 1] // MatrixForm // TeXForm



                                  $smallleft(
                                  beginarraycccccc
                                  a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
                                  a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
                                  a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
                                  a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
                                  a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
                                  a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
                                  a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
                                  a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
                                  a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
                                  endarray
                                  right)$




                                  Alternatively, (1) assign ##& (or Nothing in versions 10+) to the desired columns (dropCols2) or (2) use a combination of MapAt and ##&& (dropCols3):



                                  ClearAll[dropCols2, dropCols3]
                                  dropCols2 = Module[a = #, a[[All, #2]] = ## &; a] &;
                                  dropCols3 = MapAt[## & &, #, All, #2] &;

                                  Equal @@ (#[m, 4, 7] & /@ dropCols1, dropCols2, dropCols3)



                                  True




                                  Equal @@ (#[m, 4, 7, 1] & /@ dropCols1, dropCols2, dropCols3)



                                  True







                                  share|improve this answer


























                                    up vote
                                    1
                                    down vote













                                    You can also use a combination of Fold and Drop:



                                    ClearAll[dropCols1]
                                    dropCols1 = Fold[Drop[#, None, #2] &, #, List /@ Reverse @ Sort[#2]] &;


                                    Examples:



                                    m = Array[Subscript[a, ##] &, 9, 9];

                                    dropCols1[m, 4, 7] // MatrixForm // TeXForm



                                    $smallleft(
                                    beginarrayccccccc
                                    a_1,1 & a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
                                    a_2,1 & a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
                                    a_3,1 & a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
                                    a_4,1 & a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
                                    a_5,1 & a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
                                    a_6,1 & a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
                                    a_7,1 & a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
                                    a_8,1 & a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
                                    a_9,1 & a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
                                    endarray
                                    right)$




                                    dropCols1[m, 4, 7, 1] // MatrixForm // TeXForm



                                    $smallleft(
                                    beginarraycccccc
                                    a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
                                    a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
                                    a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
                                    a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
                                    a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
                                    a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
                                    a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
                                    a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
                                    a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
                                    endarray
                                    right)$




                                    Alternatively, (1) assign ##& (or Nothing in versions 10+) to the desired columns (dropCols2) or (2) use a combination of MapAt and ##&& (dropCols3):



                                    ClearAll[dropCols2, dropCols3]
                                    dropCols2 = Module[a = #, a[[All, #2]] = ## &; a] &;
                                    dropCols3 = MapAt[## & &, #, All, #2] &;

                                    Equal @@ (#[m, 4, 7] & /@ dropCols1, dropCols2, dropCols3)



                                    True




                                    Equal @@ (#[m, 4, 7, 1] & /@ dropCols1, dropCols2, dropCols3)



                                    True







                                    share|improve this answer
























                                      up vote
                                      1
                                      down vote










                                      up vote
                                      1
                                      down vote









                                      You can also use a combination of Fold and Drop:



                                      ClearAll[dropCols1]
                                      dropCols1 = Fold[Drop[#, None, #2] &, #, List /@ Reverse @ Sort[#2]] &;


                                      Examples:



                                      m = Array[Subscript[a, ##] &, 9, 9];

                                      dropCols1[m, 4, 7] // MatrixForm // TeXForm



                                      $smallleft(
                                      beginarrayccccccc
                                      a_1,1 & a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
                                      a_2,1 & a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
                                      a_3,1 & a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
                                      a_4,1 & a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
                                      a_5,1 & a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
                                      a_6,1 & a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
                                      a_7,1 & a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
                                      a_8,1 & a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
                                      a_9,1 & a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
                                      endarray
                                      right)$




                                      dropCols1[m, 4, 7, 1] // MatrixForm // TeXForm



                                      $smallleft(
                                      beginarraycccccc
                                      a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
                                      a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
                                      a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
                                      a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
                                      a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
                                      a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
                                      a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
                                      a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
                                      a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
                                      endarray
                                      right)$




                                      Alternatively, (1) assign ##& (or Nothing in versions 10+) to the desired columns (dropCols2) or (2) use a combination of MapAt and ##&& (dropCols3):



                                      ClearAll[dropCols2, dropCols3]
                                      dropCols2 = Module[a = #, a[[All, #2]] = ## &; a] &;
                                      dropCols3 = MapAt[## & &, #, All, #2] &;

                                      Equal @@ (#[m, 4, 7] & /@ dropCols1, dropCols2, dropCols3)



                                      True




                                      Equal @@ (#[m, 4, 7, 1] & /@ dropCols1, dropCols2, dropCols3)



                                      True







                                      share|improve this answer














                                      You can also use a combination of Fold and Drop:



                                      ClearAll[dropCols1]
                                      dropCols1 = Fold[Drop[#, None, #2] &, #, List /@ Reverse @ Sort[#2]] &;


                                      Examples:



                                      m = Array[Subscript[a, ##] &, 9, 9];

                                      dropCols1[m, 4, 7] // MatrixForm // TeXForm



                                      $smallleft(
                                      beginarrayccccccc
                                      a_1,1 & a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
                                      a_2,1 & a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
                                      a_3,1 & a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
                                      a_4,1 & a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
                                      a_5,1 & a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
                                      a_6,1 & a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
                                      a_7,1 & a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
                                      a_8,1 & a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
                                      a_9,1 & a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
                                      endarray
                                      right)$




                                      dropCols1[m, 4, 7, 1] // MatrixForm // TeXForm



                                      $smallleft(
                                      beginarraycccccc
                                      a_1,2 & a_1,3 & a_1,5 & a_1,6 & a_1,8 & a_1,9 \
                                      a_2,2 & a_2,3 & a_2,5 & a_2,6 & a_2,8 & a_2,9 \
                                      a_3,2 & a_3,3 & a_3,5 & a_3,6 & a_3,8 & a_3,9 \
                                      a_4,2 & a_4,3 & a_4,5 & a_4,6 & a_4,8 & a_4,9 \
                                      a_5,2 & a_5,3 & a_5,5 & a_5,6 & a_5,8 & a_5,9 \
                                      a_6,2 & a_6,3 & a_6,5 & a_6,6 & a_6,8 & a_6,9 \
                                      a_7,2 & a_7,3 & a_7,5 & a_7,6 & a_7,8 & a_7,9 \
                                      a_8,2 & a_8,3 & a_8,5 & a_8,6 & a_8,8 & a_8,9 \
                                      a_9,2 & a_9,3 & a_9,5 & a_9,6 & a_9,8 & a_9,9 \
                                      endarray
                                      right)$




                                      Alternatively, (1) assign ##& (or Nothing in versions 10+) to the desired columns (dropCols2) or (2) use a combination of MapAt and ##&& (dropCols3):



                                      ClearAll[dropCols2, dropCols3]
                                      dropCols2 = Module[a = #, a[[All, #2]] = ## &; a] &;
                                      dropCols3 = MapAt[## & &, #, All, #2] &;

                                      Equal @@ (#[m, 4, 7] & /@ dropCols1, dropCols2, dropCols3)



                                      True




                                      Equal @@ (#[m, 4, 7, 1] & /@ dropCols1, dropCols2, dropCols3)



                                      True








                                      share|improve this answer














                                      share|improve this answer



                                      share|improve this answer








                                      edited Sep 7 at 0:53

























                                      answered Sep 6 at 22:50









                                      kglr

                                      159k8183383




                                      159k8183383












                                          Comments

                                          Popular posts from this blog

                                          What does second last employer means? [closed]

                                          Installing NextGIS Connect into QGIS 3?

                                          Confectionery