Solving equation with multi variable matrix input
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Background, here are the equations that I am trying to solve:
Where R, E1, E2, V1, V2, P are all user inputs. X/A goes from -2 to 2 and Z/A goes from 0 to -2. Below is the code that I have so far. I created a list of inputs. Then created two arrays for the x and z inputs. The last is where I am having trouble. I'm trying to create a code such that it will hold a value for X constant in SX, SZ, and TXZ and plug in all the values for Z. Then move to the next value for X and plug all the values in for all the Z. The end goal is to create a density plot that for SX, SZ, and TXZ. Thank you!
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P=1000;
V1 = 0.3;
V2 = 0.3;
E = 1/(((1-(V1^2))/E1)+((1-(V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0,-2 A, 0.005*3*A];
ZZ = ConstantArray[Z[[Range[Length[Z]]]], Length[X]];
XX = ConstantArray[X[[Range[Length[X]]]],Length[Z]];
For[i=1,i=Length[XX],
For[j=1,j = Length[ZZ],
M = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)+(A^2-i^2+j^2)))
N = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)-(A^2-i^2+j^2)))
SX = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2)))-2*N)
SZ = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2))))
SY = V1*(SX+SZ)
TXZ = (-P/A)*N*((M^2-j^2)/(M^2+N^2)),
DensityPlot[SX/P,XX/A,ZZ/A]
]
]
plotting system-variables
New contributor
add a comment |Â
up vote
1
down vote
favorite
Background, here are the equations that I am trying to solve:
Where R, E1, E2, V1, V2, P are all user inputs. X/A goes from -2 to 2 and Z/A goes from 0 to -2. Below is the code that I have so far. I created a list of inputs. Then created two arrays for the x and z inputs. The last is where I am having trouble. I'm trying to create a code such that it will hold a value for X constant in SX, SZ, and TXZ and plug in all the values for Z. Then move to the next value for X and plug all the values in for all the Z. The end goal is to create a density plot that for SX, SZ, and TXZ. Thank you!
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P=1000;
V1 = 0.3;
V2 = 0.3;
E = 1/(((1-(V1^2))/E1)+((1-(V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0,-2 A, 0.005*3*A];
ZZ = ConstantArray[Z[[Range[Length[Z]]]], Length[X]];
XX = ConstantArray[X[[Range[Length[X]]]],Length[Z]];
For[i=1,i=Length[XX],
For[j=1,j = Length[ZZ],
M = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)+(A^2-i^2+j^2)))
N = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)-(A^2-i^2+j^2)))
SX = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2)))-2*N)
SZ = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2))))
SY = V1*(SX+SZ)
TXZ = (-P/A)*N*((M^2-j^2)/(M^2+N^2)),
DensityPlot[SX/P,XX/A,ZZ/A]
]
]
plotting system-variables
New contributor
You don't need to discretize the formula yourself, check the document ofDensityPlot
carefully. Also, notice e.g.E
andN
are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
â xzczd
2 hours ago
What do you want to determine from these equations?
â Alex Trounev
2 hours ago
So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
â Kurt
2 hours ago
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Background, here are the equations that I am trying to solve:
Where R, E1, E2, V1, V2, P are all user inputs. X/A goes from -2 to 2 and Z/A goes from 0 to -2. Below is the code that I have so far. I created a list of inputs. Then created two arrays for the x and z inputs. The last is where I am having trouble. I'm trying to create a code such that it will hold a value for X constant in SX, SZ, and TXZ and plug in all the values for Z. Then move to the next value for X and plug all the values in for all the Z. The end goal is to create a density plot that for SX, SZ, and TXZ. Thank you!
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P=1000;
V1 = 0.3;
V2 = 0.3;
E = 1/(((1-(V1^2))/E1)+((1-(V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0,-2 A, 0.005*3*A];
ZZ = ConstantArray[Z[[Range[Length[Z]]]], Length[X]];
XX = ConstantArray[X[[Range[Length[X]]]],Length[Z]];
For[i=1,i=Length[XX],
For[j=1,j = Length[ZZ],
M = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)+(A^2-i^2+j^2)))
N = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)-(A^2-i^2+j^2)))
SX = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2)))-2*N)
SZ = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2))))
SY = V1*(SX+SZ)
TXZ = (-P/A)*N*((M^2-j^2)/(M^2+N^2)),
DensityPlot[SX/P,XX/A,ZZ/A]
]
]
plotting system-variables
New contributor
Background, here are the equations that I am trying to solve:
Where R, E1, E2, V1, V2, P are all user inputs. X/A goes from -2 to 2 and Z/A goes from 0 to -2. Below is the code that I have so far. I created a list of inputs. Then created two arrays for the x and z inputs. The last is where I am having trouble. I'm trying to create a code such that it will hold a value for X constant in SX, SZ, and TXZ and plug in all the values for Z. Then move to the next value for X and plug all the values in for all the Z. The end goal is to create a density plot that for SX, SZ, and TXZ. Thank you!
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P=1000;
V1 = 0.3;
V2 = 0.3;
E = 1/(((1-(V1^2))/E1)+((1-(V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0,-2 A, 0.005*3*A];
ZZ = ConstantArray[Z[[Range[Length[Z]]]], Length[X]];
XX = ConstantArray[X[[Range[Length[X]]]],Length[Z]];
For[i=1,i=Length[XX],
For[j=1,j = Length[ZZ],
M = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)+(A^2-i^2+j^2)))
N = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)-(A^2-i^2+j^2)))
SX = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2)))-2*N)
SZ = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2))))
SY = V1*(SX+SZ)
TXZ = (-P/A)*N*((M^2-j^2)/(M^2+N^2)),
DensityPlot[SX/P,XX/A,ZZ/A]
]
]
plotting system-variables
plotting system-variables
New contributor
New contributor
New contributor
asked 2 hours ago
Kurt
62
62
New contributor
New contributor
You don't need to discretize the formula yourself, check the document ofDensityPlot
carefully. Also, notice e.g.E
andN
are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
â xzczd
2 hours ago
What do you want to determine from these equations?
â Alex Trounev
2 hours ago
So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
â Kurt
2 hours ago
add a comment |Â
You don't need to discretize the formula yourself, check the document ofDensityPlot
carefully. Also, notice e.g.E
andN
are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
â xzczd
2 hours ago
What do you want to determine from these equations?
â Alex Trounev
2 hours ago
So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
â Kurt
2 hours ago
You don't need to discretize the formula yourself, check the document of
DensityPlot
carefully. Also, notice e.g. E
and N
are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.â xzczd
2 hours ago
You don't need to discretize the formula yourself, check the document of
DensityPlot
carefully. Also, notice e.g. E
and N
are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.â xzczd
2 hours ago
What do you want to determine from these equations?
â Alex Trounev
2 hours ago
What do you want to determine from these equations?
â Alex Trounev
2 hours ago
So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
â Kurt
2 hours ago
So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
â Kurt
2 hours ago
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
4
down vote
After correcting all errors and normalization to A, we have
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P = 1000;
V1 = 0.3;
V2 = 0.3;
E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0, -2 A, 0.005*3*A];
m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
j^2))];
SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
ContourPlot[SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
After correcting all errors and normalization to A, we have
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P = 1000;
V1 = 0.3;
V2 = 0.3;
E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0, -2 A, 0.005*3*A];
m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
j^2))];
SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
ContourPlot[SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
add a comment |Â
up vote
4
down vote
After correcting all errors and normalization to A, we have
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P = 1000;
V1 = 0.3;
V2 = 0.3;
E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0, -2 A, 0.005*3*A];
m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
j^2))];
SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
ContourPlot[SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
add a comment |Â
up vote
4
down vote
up vote
4
down vote
After correcting all errors and normalization to A, we have
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P = 1000;
V1 = 0.3;
V2 = 0.3;
E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0, -2 A, 0.005*3*A];
m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
j^2))];
SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
ContourPlot[SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
After correcting all errors and normalization to A, we have
R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P = 1000;
V1 = 0.3;
V2 = 0.3;
E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0, -2 A, 0.005*3*A];
m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
j^2))];
SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
ContourPlot[SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
answered 1 hour ago
Alex Trounev
3,4201313
3,4201313
add a comment |Â
add a comment |Â
Kurt is a new contributor. Be nice, and check out our Code of Conduct.
Kurt is a new contributor. Be nice, and check out our Code of Conduct.
Kurt is a new contributor. Be nice, and check out our Code of Conduct.
Kurt is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f184922%2fsolving-equation-with-multi-variable-matrix-input%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
You don't need to discretize the formula yourself, check the document of
DensityPlot
carefully. Also, notice e.g.E
andN
are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.â xzczd
2 hours ago
What do you want to determine from these equations?
â Alex Trounev
2 hours ago
So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
â Kurt
2 hours ago