Solving equation with multi variable matrix input

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Background, here are the equations that I am trying to solve: Full Equations



Where R, E1, E2, V1, V2, P are all user inputs. X/A goes from -2 to 2 and Z/A goes from 0 to -2. Below is the code that I have so far. I created a list of inputs. Then created two arrays for the x and z inputs. The last is where I am having trouble. I'm trying to create a code such that it will hold a value for X constant in SX, SZ, and TXZ and plug in all the values for Z. Then move to the next value for X and plug all the values in for all the Z. The end goal is to create a density plot that for SX, SZ, and TXZ. Thank you!



R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P=1000;
V1 = 0.3;
V2 = 0.3;
E = 1/(((1-(V1^2))/E1)+((1-(V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0,-2 A, 0.005*3*A];

ZZ = ConstantArray[Z[[Range[Length[Z]]]], Length[X]];
XX = ConstantArray[X[[Range[Length[X]]]],Length[Z]];

For[i=1,i=Length[XX],
For[j=1,j = Length[ZZ],
M = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)+(A^2-i^2+j^2)))
N = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)-(A^2-i^2+j^2)))
SX = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2)))-2*N)
SZ = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2))))
SY = V1*(SX+SZ)
TXZ = (-P/A)*N*((M^2-j^2)/(M^2+N^2)),
DensityPlot[SX/P,XX/A,ZZ/A]
]
]









share|improve this question







New contributor




Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.



















  • You don't need to discretize the formula yourself, check the document of DensityPlot carefully. Also, notice e.g. E and N are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
    – xzczd
    2 hours ago











  • What do you want to determine from these equations?
    – Alex Trounev
    2 hours ago










  • So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
    – Kurt
    2 hours ago














up vote
1
down vote

favorite












Background, here are the equations that I am trying to solve: Full Equations



Where R, E1, E2, V1, V2, P are all user inputs. X/A goes from -2 to 2 and Z/A goes from 0 to -2. Below is the code that I have so far. I created a list of inputs. Then created two arrays for the x and z inputs. The last is where I am having trouble. I'm trying to create a code such that it will hold a value for X constant in SX, SZ, and TXZ and plug in all the values for Z. Then move to the next value for X and plug all the values in for all the Z. The end goal is to create a density plot that for SX, SZ, and TXZ. Thank you!



R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P=1000;
V1 = 0.3;
V2 = 0.3;
E = 1/(((1-(V1^2))/E1)+((1-(V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0,-2 A, 0.005*3*A];

ZZ = ConstantArray[Z[[Range[Length[Z]]]], Length[X]];
XX = ConstantArray[X[[Range[Length[X]]]],Length[Z]];

For[i=1,i=Length[XX],
For[j=1,j = Length[ZZ],
M = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)+(A^2-i^2+j^2)))
N = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)-(A^2-i^2+j^2)))
SX = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2)))-2*N)
SZ = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2))))
SY = V1*(SX+SZ)
TXZ = (-P/A)*N*((M^2-j^2)/(M^2+N^2)),
DensityPlot[SX/P,XX/A,ZZ/A]
]
]









share|improve this question







New contributor




Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.



















  • You don't need to discretize the formula yourself, check the document of DensityPlot carefully. Also, notice e.g. E and N are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
    – xzczd
    2 hours ago











  • What do you want to determine from these equations?
    – Alex Trounev
    2 hours ago










  • So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
    – Kurt
    2 hours ago












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Background, here are the equations that I am trying to solve: Full Equations



Where R, E1, E2, V1, V2, P are all user inputs. X/A goes from -2 to 2 and Z/A goes from 0 to -2. Below is the code that I have so far. I created a list of inputs. Then created two arrays for the x and z inputs. The last is where I am having trouble. I'm trying to create a code such that it will hold a value for X constant in SX, SZ, and TXZ and plug in all the values for Z. Then move to the next value for X and plug all the values in for all the Z. The end goal is to create a density plot that for SX, SZ, and TXZ. Thank you!



R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P=1000;
V1 = 0.3;
V2 = 0.3;
E = 1/(((1-(V1^2))/E1)+((1-(V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0,-2 A, 0.005*3*A];

ZZ = ConstantArray[Z[[Range[Length[Z]]]], Length[X]];
XX = ConstantArray[X[[Range[Length[X]]]],Length[Z]];

For[i=1,i=Length[XX],
For[j=1,j = Length[ZZ],
M = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)+(A^2-i^2+j^2)))
N = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)-(A^2-i^2+j^2)))
SX = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2)))-2*N)
SZ = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2))))
SY = V1*(SX+SZ)
TXZ = (-P/A)*N*((M^2-j^2)/(M^2+N^2)),
DensityPlot[SX/P,XX/A,ZZ/A]
]
]









share|improve this question







New contributor




Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











Background, here are the equations that I am trying to solve: Full Equations



Where R, E1, E2, V1, V2, P are all user inputs. X/A goes from -2 to 2 and Z/A goes from 0 to -2. Below is the code that I have so far. I created a list of inputs. Then created two arrays for the x and z inputs. The last is where I am having trouble. I'm trying to create a code such that it will hold a value for X constant in SX, SZ, and TXZ and plug in all the values for Z. Then move to the next value for X and plug all the values in for all the Z. The end goal is to create a density plot that for SX, SZ, and TXZ. Thank you!



R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P=1000;
V1 = 0.3;
V2 = 0.3;
E = 1/(((1-(V1^2))/E1)+((1-(V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0,-2 A, 0.005*3*A];

ZZ = ConstantArray[Z[[Range[Length[Z]]]], Length[X]];
XX = ConstantArray[X[[Range[Length[X]]]],Length[Z]];

For[i=1,i=Length[XX],
For[j=1,j = Length[ZZ],
M = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)+(A^2-i^2+j^2)))
N = Sqrt(.5*(((A^2-i^2+j^2)^2+4*i^2*j^2)^(.5)-(A^2-i^2+j^2)))
SX = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2)))-2*N)
SZ = (-P/A)*M*((1-((j^2+N^2)/(M^2+N^2))))
SY = V1*(SX+SZ)
TXZ = (-P/A)*N*((M^2-j^2)/(M^2+N^2)),
DensityPlot[SX/P,XX/A,ZZ/A]
]
]






plotting system-variables






share|improve this question







New contributor




Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question







New contributor




Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question






New contributor




Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Kurt

62




62




New contributor




Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Kurt is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • You don't need to discretize the formula yourself, check the document of DensityPlot carefully. Also, notice e.g. E and N are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
    – xzczd
    2 hours ago











  • What do you want to determine from these equations?
    – Alex Trounev
    2 hours ago










  • So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
    – Kurt
    2 hours ago
















  • You don't need to discretize the formula yourself, check the document of DensityPlot carefully. Also, notice e.g. E and N are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
    – xzczd
    2 hours ago











  • What do you want to determine from these equations?
    – Alex Trounev
    2 hours ago










  • So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
    – Kurt
    2 hours ago















You don't need to discretize the formula yourself, check the document of DensityPlot carefully. Also, notice e.g. E and N are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
– xzczd
2 hours ago





You don't need to discretize the formula yourself, check the document of DensityPlot carefully. Also, notice e.g. E and N are built-in symbol in Mathematica (See their color? They're black, rather than blue ), you can't use them as variable names.
– xzczd
2 hours ago













What do you want to determine from these equations?
– Alex Trounev
2 hours ago




What do you want to determine from these equations?
– Alex Trounev
2 hours ago












So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
– Kurt
2 hours ago




So I just want to graph the equations. Im not looking for any numerical results. The formulas will tell me the stress and shear below the surface of a material, and I'd like to see the counter plots.
– Kurt
2 hours ago










1 Answer
1






active

oldest

votes

















up vote
4
down vote













After correcting all errors and normalization to A, we have



R = .1;
E1 = 200*10^9;
E2 = 550*10^9;
P = 1000;
V1 = 0.3;
V2 = 0.3;
E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
A = ((.75*P*R)/(1.61172*10^11))^(1/3);
X = Range[-2 A, 2 A, 0.01*3*A];
Z = Range[0, -2 A, 0.005*3*A];




m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
j^2))];
SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
ContourPlot[SX/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SY/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]


fig1






share|improve this answer




















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "387"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: false,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Kurt is a new contributor. Be nice, and check out our Code of Conduct.









     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f184922%2fsolving-equation-with-multi-variable-matrix-input%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    4
    down vote













    After correcting all errors and normalization to A, we have



    R = .1;
    E1 = 200*10^9;
    E2 = 550*10^9;
    P = 1000;
    V1 = 0.3;
    V2 = 0.3;
    E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
    A = ((.75*P*R)/(1.61172*10^11))^(1/3);
    X = Range[-2 A, 2 A, 0.01*3*A];
    Z = Range[0, -2 A, 0.005*3*A];




    m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
    n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
    j^2))];
    SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
    SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
    TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
    SX/P, i, -2, 2, j, -2, 0,
    PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
    PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
    DensityPlot[SY/P, i, -2, 2, j, -2, 0,
    PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
    PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
    DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
    PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
    PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
    DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
    PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
    PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
    ContourPlot[SX/P, i, -2, 2, j, -2, 0,
    PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
    PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
    ContourPlot[SY/P, i, -2, 2, j, -2, 0,
    PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
    PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
    ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
    PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
    PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
    ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
    PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
    PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]


    fig1






    share|improve this answer
























      up vote
      4
      down vote













      After correcting all errors and normalization to A, we have



      R = .1;
      E1 = 200*10^9;
      E2 = 550*10^9;
      P = 1000;
      V1 = 0.3;
      V2 = 0.3;
      E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
      A = ((.75*P*R)/(1.61172*10^11))^(1/3);
      X = Range[-2 A, 2 A, 0.01*3*A];
      Z = Range[0, -2 A, 0.005*3*A];




      m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
      n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
      j^2))];
      SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
      SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
      TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
      SX/P, i, -2, 2, j, -2, 0,
      PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
      PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
      DensityPlot[SY/P, i, -2, 2, j, -2, 0,
      PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
      PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
      DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
      PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
      PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
      DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
      PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
      PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
      ContourPlot[SX/P, i, -2, 2, j, -2, 0,
      PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
      PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
      ContourPlot[SY/P, i, -2, 2, j, -2, 0,
      PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
      PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
      ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
      PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
      PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
      ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
      PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
      PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]


      fig1






      share|improve this answer






















        up vote
        4
        down vote










        up vote
        4
        down vote









        After correcting all errors and normalization to A, we have



        R = .1;
        E1 = 200*10^9;
        E2 = 550*10^9;
        P = 1000;
        V1 = 0.3;
        V2 = 0.3;
        E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
        A = ((.75*P*R)/(1.61172*10^11))^(1/3);
        X = Range[-2 A, 2 A, 0.01*3*A];
        Z = Range[0, -2 A, 0.005*3*A];




        m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
        n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
        j^2))];
        SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
        SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
        TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
        SX/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        DensityPlot[SY/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
        ContourPlot[SX/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        ContourPlot[SY/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]


        fig1






        share|improve this answer












        After correcting all errors and normalization to A, we have



        R = .1;
        E1 = 200*10^9;
        E2 = 550*10^9;
        P = 1000;
        V1 = 0.3;
        V2 = 0.3;
        E3 = 1/(((1 - (V1^2))/E1) + ((1 - (V2^2))/E2));
        A = ((.75*P*R)/(1.61172*10^11))^(1/3);
        X = Range[-2 A, 2 A, 0.01*3*A];
        Z = Range[0, -2 A, 0.005*3*A];




        m = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) + (1 - i^2 + j^2))];
        n = Sqrt[.5*(((1 - i^2 + j^2)^2 + 4*i^2*j^2)^(.5) - (1 - i^2 +
        j^2))];
        SX = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2))) - 2*j);
        SZ = (-P)*m*((1 - ((j^2 + n^2)/(m^2 + n^2)))); SY = V1*(SX + SZ);
        TXZ = (-P)*n*((m^2 - j^2)/(m^2 + n^2)); DensityPlot[
        SX/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        DensityPlot[SY/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        DensityPlot[SZ/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        DensityPlot[TXZ/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]
        ContourPlot[SX/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (x)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        ContourPlot[SY/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (y)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        ContourPlot[SZ/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Sigma]), (z)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"],
        ContourPlot[TXZ/P, i, -2, 2, j, -2, 0,
        PlotLabel -> "!(*SubscriptBox[([Tau]), (xz)])/P",
        PlotLegends -> Automatic, FrameLabel -> "x/a", "z/a"]


        fig1







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 1 hour ago









        Alex Trounev

        3,4201313




        3,4201313




















            Kurt is a new contributor. Be nice, and check out our Code of Conduct.









             

            draft saved


            draft discarded


















            Kurt is a new contributor. Be nice, and check out our Code of Conduct.












            Kurt is a new contributor. Be nice, and check out our Code of Conduct.











            Kurt is a new contributor. Be nice, and check out our Code of Conduct.













             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f184922%2fsolving-equation-with-multi-variable-matrix-input%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What does second last employer means? [closed]

            Installing NextGIS Connect into QGIS 3?

            Confectionery