Derivation of the tangent half angle identity
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I'm having trouble proceeding from
$$fracsin(theta)1+cos(theta)$$
to
$$tanleft(fractheta2right)$$
Context:
Consider the function $f$ defined for all $(x,y)$ such that $y neq 0$, with the rule $$f(x,y) = fracysqrtx^2+y^2+x$$
Show that $$f(rcos(theta),rsin(theta)) = tanleft(fractheta2right)$$
So far I've done:
$$f(rcos(theta),rsin(theta)) = fracrsin(theta)sqrtr^2cos^2(theta) + r^2sin^2(theta)+rcos(theta) = fracrsin(theta)sqrtr^2+rcos(theta)\=fracsin(theta)1+cos(theta)$$
Using $$cos(theta) = 2cos^2left(fractheta2right)-1 implies 2cos^2left(fractheta2right)=cos(theta)+1$$
We get $$f(rcos(theta),rsin(theta)) = fracsin(theta)2cos^2left(fractheta2right)$$
But I can't see how to proceed from here to the required result. Thanks in advance for any help!
algebra-precalculus multivariable-calculus trigonometry
add a comment |Â
up vote
1
down vote
favorite
I'm having trouble proceeding from
$$fracsin(theta)1+cos(theta)$$
to
$$tanleft(fractheta2right)$$
Context:
Consider the function $f$ defined for all $(x,y)$ such that $y neq 0$, with the rule $$f(x,y) = fracysqrtx^2+y^2+x$$
Show that $$f(rcos(theta),rsin(theta)) = tanleft(fractheta2right)$$
So far I've done:
$$f(rcos(theta),rsin(theta)) = fracrsin(theta)sqrtr^2cos^2(theta) + r^2sin^2(theta)+rcos(theta) = fracrsin(theta)sqrtr^2+rcos(theta)\=fracsin(theta)1+cos(theta)$$
Using $$cos(theta) = 2cos^2left(fractheta2right)-1 implies 2cos^2left(fractheta2right)=cos(theta)+1$$
We get $$f(rcos(theta),rsin(theta)) = fracsin(theta)2cos^2left(fractheta2right)$$
But I can't see how to proceed from here to the required result. Thanks in advance for any help!
algebra-precalculus multivariable-calculus trigonometry
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm having trouble proceeding from
$$fracsin(theta)1+cos(theta)$$
to
$$tanleft(fractheta2right)$$
Context:
Consider the function $f$ defined for all $(x,y)$ such that $y neq 0$, with the rule $$f(x,y) = fracysqrtx^2+y^2+x$$
Show that $$f(rcos(theta),rsin(theta)) = tanleft(fractheta2right)$$
So far I've done:
$$f(rcos(theta),rsin(theta)) = fracrsin(theta)sqrtr^2cos^2(theta) + r^2sin^2(theta)+rcos(theta) = fracrsin(theta)sqrtr^2+rcos(theta)\=fracsin(theta)1+cos(theta)$$
Using $$cos(theta) = 2cos^2left(fractheta2right)-1 implies 2cos^2left(fractheta2right)=cos(theta)+1$$
We get $$f(rcos(theta),rsin(theta)) = fracsin(theta)2cos^2left(fractheta2right)$$
But I can't see how to proceed from here to the required result. Thanks in advance for any help!
algebra-precalculus multivariable-calculus trigonometry
I'm having trouble proceeding from
$$fracsin(theta)1+cos(theta)$$
to
$$tanleft(fractheta2right)$$
Context:
Consider the function $f$ defined for all $(x,y)$ such that $y neq 0$, with the rule $$f(x,y) = fracysqrtx^2+y^2+x$$
Show that $$f(rcos(theta),rsin(theta)) = tanleft(fractheta2right)$$
So far I've done:
$$f(rcos(theta),rsin(theta)) = fracrsin(theta)sqrtr^2cos^2(theta) + r^2sin^2(theta)+rcos(theta) = fracrsin(theta)sqrtr^2+rcos(theta)\=fracsin(theta)1+cos(theta)$$
Using $$cos(theta) = 2cos^2left(fractheta2right)-1 implies 2cos^2left(fractheta2right)=cos(theta)+1$$
We get $$f(rcos(theta),rsin(theta)) = fracsin(theta)2cos^2left(fractheta2right)$$
But I can't see how to proceed from here to the required result. Thanks in advance for any help!
algebra-precalculus multivariable-calculus trigonometry
algebra-precalculus multivariable-calculus trigonometry
asked 32 mins ago
Patrick Jankowski
281113
281113
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
4
down vote
accepted
Hint: The numerator can be written as
$$ sintheta = sin left(2 cdot fractheta2right) = 2sinfractheta2cosfractheta2. $$
2
beautiful, thanks man! so quick too
– Patrick Jankowski
29 mins ago
1
Thank you for that, have a nice day!
– Sobi
27 mins ago
add a comment |Â
up vote
4
down vote
It is a lot easier to use some trig. identities: $sin (theta) =2 sin (theta /2) cos (theta /2)$ and $1+cos theta =2cos ^2 (theta /2)$. You will immediately get the result from these two formulas.
add a comment |Â
up vote
0
down vote
$ tan (theta/2)= dfrac sin(theta/2)cos(theta/2)=$
$dfrac 2sin (theta/2)(cos(theta/2) 2cos^2(theta/2)=$
$dfracsin (theta)2cos^2 (theta/2)= dfracsin theta1+cos (theta)$
Identities:
1) $sin (theta) =2 sin (theta/2)cos (theta/2)$
2) $cos theta = cos^2 (theta/2)-sin^2 (theta/2)$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Hint: The numerator can be written as
$$ sintheta = sin left(2 cdot fractheta2right) = 2sinfractheta2cosfractheta2. $$
2
beautiful, thanks man! so quick too
– Patrick Jankowski
29 mins ago
1
Thank you for that, have a nice day!
– Sobi
27 mins ago
add a comment |Â
up vote
4
down vote
accepted
Hint: The numerator can be written as
$$ sintheta = sin left(2 cdot fractheta2right) = 2sinfractheta2cosfractheta2. $$
2
beautiful, thanks man! so quick too
– Patrick Jankowski
29 mins ago
1
Thank you for that, have a nice day!
– Sobi
27 mins ago
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Hint: The numerator can be written as
$$ sintheta = sin left(2 cdot fractheta2right) = 2sinfractheta2cosfractheta2. $$
Hint: The numerator can be written as
$$ sintheta = sin left(2 cdot fractheta2right) = 2sinfractheta2cosfractheta2. $$
answered 30 mins ago
Sobi
3,6021520
3,6021520
2
beautiful, thanks man! so quick too
– Patrick Jankowski
29 mins ago
1
Thank you for that, have a nice day!
– Sobi
27 mins ago
add a comment |Â
2
beautiful, thanks man! so quick too
– Patrick Jankowski
29 mins ago
1
Thank you for that, have a nice day!
– Sobi
27 mins ago
2
2
beautiful, thanks man! so quick too
– Patrick Jankowski
29 mins ago
beautiful, thanks man! so quick too
– Patrick Jankowski
29 mins ago
1
1
Thank you for that, have a nice day!
– Sobi
27 mins ago
Thank you for that, have a nice day!
– Sobi
27 mins ago
add a comment |Â
up vote
4
down vote
It is a lot easier to use some trig. identities: $sin (theta) =2 sin (theta /2) cos (theta /2)$ and $1+cos theta =2cos ^2 (theta /2)$. You will immediately get the result from these two formulas.
add a comment |Â
up vote
4
down vote
It is a lot easier to use some trig. identities: $sin (theta) =2 sin (theta /2) cos (theta /2)$ and $1+cos theta =2cos ^2 (theta /2)$. You will immediately get the result from these two formulas.
add a comment |Â
up vote
4
down vote
up vote
4
down vote
It is a lot easier to use some trig. identities: $sin (theta) =2 sin (theta /2) cos (theta /2)$ and $1+cos theta =2cos ^2 (theta /2)$. You will immediately get the result from these two formulas.
It is a lot easier to use some trig. identities: $sin (theta) =2 sin (theta /2) cos (theta /2)$ and $1+cos theta =2cos ^2 (theta /2)$. You will immediately get the result from these two formulas.
answered 29 mins ago


Kavi Rama Murthy
34.4k31745
34.4k31745
add a comment |Â
add a comment |Â
up vote
0
down vote
$ tan (theta/2)= dfrac sin(theta/2)cos(theta/2)=$
$dfrac 2sin (theta/2)(cos(theta/2) 2cos^2(theta/2)=$
$dfracsin (theta)2cos^2 (theta/2)= dfracsin theta1+cos (theta)$
Identities:
1) $sin (theta) =2 sin (theta/2)cos (theta/2)$
2) $cos theta = cos^2 (theta/2)-sin^2 (theta/2)$
add a comment |Â
up vote
0
down vote
$ tan (theta/2)= dfrac sin(theta/2)cos(theta/2)=$
$dfrac 2sin (theta/2)(cos(theta/2) 2cos^2(theta/2)=$
$dfracsin (theta)2cos^2 (theta/2)= dfracsin theta1+cos (theta)$
Identities:
1) $sin (theta) =2 sin (theta/2)cos (theta/2)$
2) $cos theta = cos^2 (theta/2)-sin^2 (theta/2)$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$ tan (theta/2)= dfrac sin(theta/2)cos(theta/2)=$
$dfrac 2sin (theta/2)(cos(theta/2) 2cos^2(theta/2)=$
$dfracsin (theta)2cos^2 (theta/2)= dfracsin theta1+cos (theta)$
Identities:
1) $sin (theta) =2 sin (theta/2)cos (theta/2)$
2) $cos theta = cos^2 (theta/2)-sin^2 (theta/2)$
$ tan (theta/2)= dfrac sin(theta/2)cos(theta/2)=$
$dfrac 2sin (theta/2)(cos(theta/2) 2cos^2(theta/2)=$
$dfracsin (theta)2cos^2 (theta/2)= dfracsin theta1+cos (theta)$
Identities:
1) $sin (theta) =2 sin (theta/2)cos (theta/2)$
2) $cos theta = cos^2 (theta/2)-sin^2 (theta/2)$
edited 6 mins ago
answered 14 mins ago
Peter Szilas
9,6362720
9,6362720
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2977317%2fderivation-of-the-tangent-half-angle-identity%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password