Defining abstract varieties and their morphisms over a finitely generated subfield of the base field
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Let $k$ be an algebraically closed field.
By a finitely generated subfield of $k$ I mean a subfield $k_0subset k$ that is finitely generated over the prime subfield of $k$ (that is, over $mathbb Q$ or $mathbb F_p$).
I need a reference or a proof for the following (well-known? evident?) proposition:
Proposition.
Let
$$fcolon Xto V$$
be a morphism of $k$-varieties.
Then the triple $(X,Y,f)$ can be defined over a finitely generated subfield of $k$.
In other words, there exists a finitely generated subfield $k_0subset k$
and a morphism of $k_0$-varieties
$$f_0colon X_0to Y_0$$
such that
$(X_0,Y_0,f_0)times_k_0 k$ is isomorphic to $(X,Y,f)$.
A referee asked me to prove this assertion. I know how to prove this for affine and projective varieties, but not for abstract varieties.
ag.algebraic-geometry arithmetic-geometry schemes
add a comment |Â
up vote
3
down vote
favorite
Let $k$ be an algebraically closed field.
By a finitely generated subfield of $k$ I mean a subfield $k_0subset k$ that is finitely generated over the prime subfield of $k$ (that is, over $mathbb Q$ or $mathbb F_p$).
I need a reference or a proof for the following (well-known? evident?) proposition:
Proposition.
Let
$$fcolon Xto V$$
be a morphism of $k$-varieties.
Then the triple $(X,Y,f)$ can be defined over a finitely generated subfield of $k$.
In other words, there exists a finitely generated subfield $k_0subset k$
and a morphism of $k_0$-varieties
$$f_0colon X_0to Y_0$$
such that
$(X_0,Y_0,f_0)times_k_0 k$ is isomorphic to $(X,Y,f)$.
A referee asked me to prove this assertion. I know how to prove this for affine and projective varieties, but not for abstract varieties.
ag.algebraic-geometry arithmetic-geometry schemes
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Let $k$ be an algebraically closed field.
By a finitely generated subfield of $k$ I mean a subfield $k_0subset k$ that is finitely generated over the prime subfield of $k$ (that is, over $mathbb Q$ or $mathbb F_p$).
I need a reference or a proof for the following (well-known? evident?) proposition:
Proposition.
Let
$$fcolon Xto V$$
be a morphism of $k$-varieties.
Then the triple $(X,Y,f)$ can be defined over a finitely generated subfield of $k$.
In other words, there exists a finitely generated subfield $k_0subset k$
and a morphism of $k_0$-varieties
$$f_0colon X_0to Y_0$$
such that
$(X_0,Y_0,f_0)times_k_0 k$ is isomorphic to $(X,Y,f)$.
A referee asked me to prove this assertion. I know how to prove this for affine and projective varieties, but not for abstract varieties.
ag.algebraic-geometry arithmetic-geometry schemes
Let $k$ be an algebraically closed field.
By a finitely generated subfield of $k$ I mean a subfield $k_0subset k$ that is finitely generated over the prime subfield of $k$ (that is, over $mathbb Q$ or $mathbb F_p$).
I need a reference or a proof for the following (well-known? evident?) proposition:
Proposition.
Let
$$fcolon Xto V$$
be a morphism of $k$-varieties.
Then the triple $(X,Y,f)$ can be defined over a finitely generated subfield of $k$.
In other words, there exists a finitely generated subfield $k_0subset k$
and a morphism of $k_0$-varieties
$$f_0colon X_0to Y_0$$
such that
$(X_0,Y_0,f_0)times_k_0 k$ is isomorphic to $(X,Y,f)$.
A referee asked me to prove this assertion. I know how to prove this for affine and projective varieties, but not for abstract varieties.
ag.algebraic-geometry arithmetic-geometry schemes
ag.algebraic-geometry arithmetic-geometry schemes
asked 1 hour ago
Mikhail Borovoi
5,6541641
5,6541641
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
6
down vote
This is treated (in much greater generality) in EGA IV$_3$, Théorème 8.8.2. The existence of $X_0$ and $Y_0$ follows from part (ii), whereas the existence of $f_0$ is part (i).
References.
[EGA IV$_3$] A. Grothendieck, ÃÂléments de géométrie algébrique. IV: ÃÂtude locale des schémas et des morphismes de schémas. (Troisième partie). Publ. Math., Inst. Hautes ÃÂtud. Sci. 28, 1-255 (1966). ZBL0144.19904. DOI: 10.1007/BF02684343
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
6
down vote
This is treated (in much greater generality) in EGA IV$_3$, Théorème 8.8.2. The existence of $X_0$ and $Y_0$ follows from part (ii), whereas the existence of $f_0$ is part (i).
References.
[EGA IV$_3$] A. Grothendieck, ÃÂléments de géométrie algébrique. IV: ÃÂtude locale des schémas et des morphismes de schémas. (Troisième partie). Publ. Math., Inst. Hautes ÃÂtud. Sci. 28, 1-255 (1966). ZBL0144.19904. DOI: 10.1007/BF02684343
add a comment |Â
up vote
6
down vote
This is treated (in much greater generality) in EGA IV$_3$, Théorème 8.8.2. The existence of $X_0$ and $Y_0$ follows from part (ii), whereas the existence of $f_0$ is part (i).
References.
[EGA IV$_3$] A. Grothendieck, ÃÂléments de géométrie algébrique. IV: ÃÂtude locale des schémas et des morphismes de schémas. (Troisième partie). Publ. Math., Inst. Hautes ÃÂtud. Sci. 28, 1-255 (1966). ZBL0144.19904. DOI: 10.1007/BF02684343
add a comment |Â
up vote
6
down vote
up vote
6
down vote
This is treated (in much greater generality) in EGA IV$_3$, Théorème 8.8.2. The existence of $X_0$ and $Y_0$ follows from part (ii), whereas the existence of $f_0$ is part (i).
References.
[EGA IV$_3$] A. Grothendieck, ÃÂléments de géométrie algébrique. IV: ÃÂtude locale des schémas et des morphismes de schémas. (Troisième partie). Publ. Math., Inst. Hautes ÃÂtud. Sci. 28, 1-255 (1966). ZBL0144.19904. DOI: 10.1007/BF02684343
This is treated (in much greater generality) in EGA IV$_3$, Théorème 8.8.2. The existence of $X_0$ and $Y_0$ follows from part (ii), whereas the existence of $f_0$ is part (i).
References.
[EGA IV$_3$] A. Grothendieck, ÃÂléments de géométrie algébrique. IV: ÃÂtude locale des schémas et des morphismes de schémas. (Troisième partie). Publ. Math., Inst. Hautes ÃÂtud. Sci. 28, 1-255 (1966). ZBL0144.19904. DOI: 10.1007/BF02684343
answered 54 mins ago
R. van Dobben de Bruyn
9,38122858
9,38122858
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f312108%2fdefining-abstract-varieties-and-their-morphisms-over-a-finitely-generated-subfie%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password