A double sum or a definite integral.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite












I am trying to evaluate the following double sum
begineqnarray*
sum_n=1^infty sum_m=1^infty frac(-1)^n+mn(3n+m).
endeqnarray*
Using the integral trick
begineqnarray*
frac13n+m =int_0^1 y^3n+m-1 dy,
endeqnarray*
the sum can be transformed into integral
begineqnarray*
int_0^1 frac ln(1+y^3)1+y dy.
endeqnarray*
Now "half" of this is easy (IBP & rearrange)
begineqnarray*
int_0^1 frac ln(1+y)1+y dy = frac12 (ln 2)^2.
endeqnarray*
So we are left with
begineqnarray*
int_0^1 frac ln(1-y+y^2)1+y dy = int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy.
endeqnarray*
Now, apart from the obvious IBP done above, this integral has me stumped.



An exact evaluation would be nice, barring that, an expression in terms of dilogrithmic values or something similar would be helpful. Any comments or answers, gratefully received.



If this integral has been seen before a reference & advise on how I would search & find something similar in the future would be gratefully appreciated.










share|cite|improve this question



























    up vote
    5
    down vote

    favorite












    I am trying to evaluate the following double sum
    begineqnarray*
    sum_n=1^infty sum_m=1^infty frac(-1)^n+mn(3n+m).
    endeqnarray*
    Using the integral trick
    begineqnarray*
    frac13n+m =int_0^1 y^3n+m-1 dy,
    endeqnarray*
    the sum can be transformed into integral
    begineqnarray*
    int_0^1 frac ln(1+y^3)1+y dy.
    endeqnarray*
    Now "half" of this is easy (IBP & rearrange)
    begineqnarray*
    int_0^1 frac ln(1+y)1+y dy = frac12 (ln 2)^2.
    endeqnarray*
    So we are left with
    begineqnarray*
    int_0^1 frac ln(1-y+y^2)1+y dy = int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy.
    endeqnarray*
    Now, apart from the obvious IBP done above, this integral has me stumped.



    An exact evaluation would be nice, barring that, an expression in terms of dilogrithmic values or something similar would be helpful. Any comments or answers, gratefully received.



    If this integral has been seen before a reference & advise on how I would search & find something similar in the future would be gratefully appreciated.










    share|cite|improve this question

























      up vote
      5
      down vote

      favorite









      up vote
      5
      down vote

      favorite











      I am trying to evaluate the following double sum
      begineqnarray*
      sum_n=1^infty sum_m=1^infty frac(-1)^n+mn(3n+m).
      endeqnarray*
      Using the integral trick
      begineqnarray*
      frac13n+m =int_0^1 y^3n+m-1 dy,
      endeqnarray*
      the sum can be transformed into integral
      begineqnarray*
      int_0^1 frac ln(1+y^3)1+y dy.
      endeqnarray*
      Now "half" of this is easy (IBP & rearrange)
      begineqnarray*
      int_0^1 frac ln(1+y)1+y dy = frac12 (ln 2)^2.
      endeqnarray*
      So we are left with
      begineqnarray*
      int_0^1 frac ln(1-y+y^2)1+y dy = int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy.
      endeqnarray*
      Now, apart from the obvious IBP done above, this integral has me stumped.



      An exact evaluation would be nice, barring that, an expression in terms of dilogrithmic values or something similar would be helpful. Any comments or answers, gratefully received.



      If this integral has been seen before a reference & advise on how I would search & find something similar in the future would be gratefully appreciated.










      share|cite|improve this question















      I am trying to evaluate the following double sum
      begineqnarray*
      sum_n=1^infty sum_m=1^infty frac(-1)^n+mn(3n+m).
      endeqnarray*
      Using the integral trick
      begineqnarray*
      frac13n+m =int_0^1 y^3n+m-1 dy,
      endeqnarray*
      the sum can be transformed into integral
      begineqnarray*
      int_0^1 frac ln(1+y^3)1+y dy.
      endeqnarray*
      Now "half" of this is easy (IBP & rearrange)
      begineqnarray*
      int_0^1 frac ln(1+y)1+y dy = frac12 (ln 2)^2.
      endeqnarray*
      So we are left with
      begineqnarray*
      int_0^1 frac ln(1-y+y^2)1+y dy = int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy.
      endeqnarray*
      Now, apart from the obvious IBP done above, this integral has me stumped.



      An exact evaluation would be nice, barring that, an expression in terms of dilogrithmic values or something similar would be helpful. Any comments or answers, gratefully received.



      If this integral has been seen before a reference & advise on how I would search & find something similar in the future would be gratefully appreciated.







      integration sequences-and-series definite-integrals summation






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 55 mins ago









      Frank W.

      2,1461315




      2,1461315










      asked 6 hours ago









      Donald Splutterwit

      21.5k21244




      21.5k21244




















          3 Answers
          3






          active

          oldest

          votes

















          up vote
          2
          down vote













          If it helps: Maple 7 computes the expression
          $$ - mathrmln(2),mathrmln(3) - mathrmln(2),mathrm
          ln(displaystyle frac 13 ,I) - mathrmln(2),mathrm
          ln(displaystyle frac -13 ,I)
          \- mathrmdilog( -
          displaystyle frac 13 + I,sqrt3 + displaystyle
          frac I,sqrt33 + I,sqrt3 )
          \ - mathrmdilog(displaystyle frac 1 - 3 + I,
          sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
          3 )
          \ + mathrmdilog( - displaystyle frac 1 - 3 + I,
          sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
          3 ) \
          + mathrmdilog(displaystyle frac 13 + I,sqrt3
          + displaystyle frac I,sqrt33 + I,sqrt3 ) $$



          This will evaluate to $-0.12693500084879648110964091818$ and is compatible with Wolfram Alpha's $-0.126935$ (no symbolic answer here).



          Please note that Maple's dilog is related to the standard polylogarithms by
          $$operatornamedilog(x) = operatornameLi_2(1-x)$$






          share|cite|improve this answer






















          • Thanks you for this ... I will try to neaten up these dilogarithms.
            – Donald Splutterwit
            5 hours ago






          • 1




            With Maple 2018 I get $$-frac left( ln left( 3 right) right) ^24+frac 5,pi^2 36+ln left( 2 right) ln left( 3 right) -rm dilog left( i/sqrt 3 right) -rm dilog left( -i/sqrt 3 right) $$
            – Robert Israel
            5 hours ago











          • @RobertIsrael Isn't there a functional equation for dilogarithms where you can simplify the last two terms into a real term? Or am I mistaken?
            – Frank W.
            5 hours ago










          • @FrankW. I don't know of one. Using the definition of dilog just gets me back to an integral similar to the one we started with.
            – Robert Israel
            2 hours ago










          • @RobertIsrael Okay, maybe I'm thinking of something else.
            – Frank W.
            1 hour ago

















          up vote
          2
          down vote













          This integral won't evaluate to anything pretty, but we can write it in terms of the dilogarithm $operatorname Li_2(x)$. Factoring a $-2$ out of the numerator and completing the square in the denominator gives us:



          $$int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy = -2int_0^1 frac (y-frac12)ln(1+y)(y-frac12)^2 +frac34 dy.$$



          Then apply the substitution $x=y-frac12$.



          $$int_-frac 12^frac 12 fracx ln(x+ frac32)x^2+ frac 34dx = int_-frac 12^frac 12 overbraceln(x+ frac32)^u cdot underbrace frac xx^2+ frac 34 dx _dv$$ Integration by parts show the original integral is equivalent to $displaystyle int_-frac 12^frac12 fracln(x^2+frac34)x+frac 32dx$. Now we can introduce yet another substitution, say $z=x+frac 32$. Now we get:



          $$int_1^2 frac ln bigl((z- frac 32)^2 + frac 34big)zdz$$
          We can factor the sum of squares by using the fact that $a^2 +b^2 = (a+bi)(a-bi)$.
          $$int_1^2 frac lnbig((z- frac 32 + frac sqrt 32i)(z- frac 32 - frac sqrt 32i)big)zdz$$



          Using the log rules, you can rewrite this as the sum of two integrals:
          $$int_1^2 frac ln(z- frac 32 + frac sqrt 32i)zdz + int_1^2 frac ln (z- frac 32 - frac sqrt 32i)zdz tag1$$



          Now lets look for a general solution to $displaystyle int_1^2 frac ln (x+a)xdx $, where $a$ is any constant.
          $$int_1^2 frac ln (x+a)xdx = int_1^2 frac lnbig(a(frac xa +1)big)xdx = ln(a) int_1^2 frac dxx+ int_1^2 frac ln(frac xa +1)x dx.$$ Apply the substitution $u = - frac xa$. This changes it to:



          $$ ln(a)ln(2)+ int frac ln(1-u)u du = Big[ln(a)ln(x)+ operatorname Li_2 (- frac xa)+ CBig]_1^2$$
          $$ int_1^2 frac ln (x+a)xdx =ln(a)ln(2)+ operatorname Li_2 (- frac 2a)- operatorname Li_2 (-frac 1a) tag2$$



          Now, putting (2) into (1) yields:



          $$ ln(- frac 32 + frac sqrt 32i)ln(2)+ operatorname Li_2 (- frac 2- frac 32 + frac sqrt 32i)- operatorname Li_2 (-frac 1- frac 32 + frac sqrt 32i) + ln(- frac 32 - frac sqrt 32i)ln(2)+ operatorname Li_2 ( frac 2 frac 32 + frac sqrt 32i)- operatorname Li_2 (frac 1 frac 32 + frac sqrt 32i) $$



          There's probably a way to simplify this, but I bet it's very tedious. The imaginary part should end up being 0.






          share|cite|improve this answer



























            up vote
            1
            down vote














            $$intlimits_0^1mathrm dx,frac log(1+x^3)1+xcolorblue=frac 12operatornameLi_2left(-frac 13right)+frac 14log^23+frac 12log^22-frac pi^236$$Confirmed by Wolfram Alpha.




            Call the integral $mathfrakI$ and make the transformation $xmapstotfrac 1-x1+x$. What's left is$$mathfrakI=log^22+intlimits_0^1mathrm dx,frac log(1+3x^2)1+x-3intlimits_0^1mathrm dx,frac log(1+x)1+x$$
            The last integral is trivially equal to$$intlimits_0^1mathrm dx,frac log(1+x)1+xcolorred=frac 12log^22$$The middle integral is difficult and I am still not aware of a full solution to the integral by hand. Replace the three with a parameter say, $a$, and differentiate with respect to $a$$$mathfrakI(a)=intlimits_0^1mathrm dxspacefrac log(1+ax^2)1+x$$Thus$$beginalign*mathfrakI'(a) & =intlimits_0^1mathrm dxspaceleft[frac 1(1+a)(1+x)+frac x(1+a)(1+ax^2)-frac 1(1+a)(1+ax^2)right]\ & =frac 11+alog 2+frac log(1+a)2a(1+a)-frac 1sqrt a(1+a)arctansqrt aendalign*$$Integrate both sides with respect to $a$ and from zero to three to get (I used Wolfram Alpha on this step)$$intlimits_0^1mathrm dxspacefrac log(1+3x^2)1+xcolorbrown=log^22+frac 12operatornameLi_2left(-frac 13right)+frac 14log^23-frac pi^236$$Now add everything together and you should get the result I stated at the beginning of my answer.






            share|cite|improve this answer




















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2916062%2fa-double-sum-or-a-definite-integral%23new-answer', 'question_page');

              );

              Post as a guest






























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              2
              down vote













              If it helps: Maple 7 computes the expression
              $$ - mathrmln(2),mathrmln(3) - mathrmln(2),mathrm
              ln(displaystyle frac 13 ,I) - mathrmln(2),mathrm
              ln(displaystyle frac -13 ,I)
              \- mathrmdilog( -
              displaystyle frac 13 + I,sqrt3 + displaystyle
              frac I,sqrt33 + I,sqrt3 )
              \ - mathrmdilog(displaystyle frac 1 - 3 + I,
              sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
              3 )
              \ + mathrmdilog( - displaystyle frac 1 - 3 + I,
              sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
              3 ) \
              + mathrmdilog(displaystyle frac 13 + I,sqrt3
              + displaystyle frac I,sqrt33 + I,sqrt3 ) $$



              This will evaluate to $-0.12693500084879648110964091818$ and is compatible with Wolfram Alpha's $-0.126935$ (no symbolic answer here).



              Please note that Maple's dilog is related to the standard polylogarithms by
              $$operatornamedilog(x) = operatornameLi_2(1-x)$$






              share|cite|improve this answer






















              • Thanks you for this ... I will try to neaten up these dilogarithms.
                – Donald Splutterwit
                5 hours ago






              • 1




                With Maple 2018 I get $$-frac left( ln left( 3 right) right) ^24+frac 5,pi^2 36+ln left( 2 right) ln left( 3 right) -rm dilog left( i/sqrt 3 right) -rm dilog left( -i/sqrt 3 right) $$
                – Robert Israel
                5 hours ago











              • @RobertIsrael Isn't there a functional equation for dilogarithms where you can simplify the last two terms into a real term? Or am I mistaken?
                – Frank W.
                5 hours ago










              • @FrankW. I don't know of one. Using the definition of dilog just gets me back to an integral similar to the one we started with.
                – Robert Israel
                2 hours ago










              • @RobertIsrael Okay, maybe I'm thinking of something else.
                – Frank W.
                1 hour ago














              up vote
              2
              down vote













              If it helps: Maple 7 computes the expression
              $$ - mathrmln(2),mathrmln(3) - mathrmln(2),mathrm
              ln(displaystyle frac 13 ,I) - mathrmln(2),mathrm
              ln(displaystyle frac -13 ,I)
              \- mathrmdilog( -
              displaystyle frac 13 + I,sqrt3 + displaystyle
              frac I,sqrt33 + I,sqrt3 )
              \ - mathrmdilog(displaystyle frac 1 - 3 + I,
              sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
              3 )
              \ + mathrmdilog( - displaystyle frac 1 - 3 + I,
              sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
              3 ) \
              + mathrmdilog(displaystyle frac 13 + I,sqrt3
              + displaystyle frac I,sqrt33 + I,sqrt3 ) $$



              This will evaluate to $-0.12693500084879648110964091818$ and is compatible with Wolfram Alpha's $-0.126935$ (no symbolic answer here).



              Please note that Maple's dilog is related to the standard polylogarithms by
              $$operatornamedilog(x) = operatornameLi_2(1-x)$$






              share|cite|improve this answer






















              • Thanks you for this ... I will try to neaten up these dilogarithms.
                – Donald Splutterwit
                5 hours ago






              • 1




                With Maple 2018 I get $$-frac left( ln left( 3 right) right) ^24+frac 5,pi^2 36+ln left( 2 right) ln left( 3 right) -rm dilog left( i/sqrt 3 right) -rm dilog left( -i/sqrt 3 right) $$
                – Robert Israel
                5 hours ago











              • @RobertIsrael Isn't there a functional equation for dilogarithms where you can simplify the last two terms into a real term? Or am I mistaken?
                – Frank W.
                5 hours ago










              • @FrankW. I don't know of one. Using the definition of dilog just gets me back to an integral similar to the one we started with.
                – Robert Israel
                2 hours ago










              • @RobertIsrael Okay, maybe I'm thinking of something else.
                – Frank W.
                1 hour ago












              up vote
              2
              down vote










              up vote
              2
              down vote









              If it helps: Maple 7 computes the expression
              $$ - mathrmln(2),mathrmln(3) - mathrmln(2),mathrm
              ln(displaystyle frac 13 ,I) - mathrmln(2),mathrm
              ln(displaystyle frac -13 ,I)
              \- mathrmdilog( -
              displaystyle frac 13 + I,sqrt3 + displaystyle
              frac I,sqrt33 + I,sqrt3 )
              \ - mathrmdilog(displaystyle frac 1 - 3 + I,
              sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
              3 )
              \ + mathrmdilog( - displaystyle frac 1 - 3 + I,
              sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
              3 ) \
              + mathrmdilog(displaystyle frac 13 + I,sqrt3
              + displaystyle frac I,sqrt33 + I,sqrt3 ) $$



              This will evaluate to $-0.12693500084879648110964091818$ and is compatible with Wolfram Alpha's $-0.126935$ (no symbolic answer here).



              Please note that Maple's dilog is related to the standard polylogarithms by
              $$operatornamedilog(x) = operatornameLi_2(1-x)$$






              share|cite|improve this answer














              If it helps: Maple 7 computes the expression
              $$ - mathrmln(2),mathrmln(3) - mathrmln(2),mathrm
              ln(displaystyle frac 13 ,I) - mathrmln(2),mathrm
              ln(displaystyle frac -13 ,I)
              \- mathrmdilog( -
              displaystyle frac 13 + I,sqrt3 + displaystyle
              frac I,sqrt33 + I,sqrt3 )
              \ - mathrmdilog(displaystyle frac 1 - 3 + I,
              sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
              3 )
              \ + mathrmdilog( - displaystyle frac 1 - 3 + I,
              sqrt3 + displaystyle frac I,sqrt3 - 3 + I,sqrt
              3 ) \
              + mathrmdilog(displaystyle frac 13 + I,sqrt3
              + displaystyle frac I,sqrt33 + I,sqrt3 ) $$



              This will evaluate to $-0.12693500084879648110964091818$ and is compatible with Wolfram Alpha's $-0.126935$ (no symbolic answer here).



              Please note that Maple's dilog is related to the standard polylogarithms by
              $$operatornamedilog(x) = operatornameLi_2(1-x)$$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited 5 hours ago

























              answered 5 hours ago









              gammatester

              15.9k21529




              15.9k21529











              • Thanks you for this ... I will try to neaten up these dilogarithms.
                – Donald Splutterwit
                5 hours ago






              • 1




                With Maple 2018 I get $$-frac left( ln left( 3 right) right) ^24+frac 5,pi^2 36+ln left( 2 right) ln left( 3 right) -rm dilog left( i/sqrt 3 right) -rm dilog left( -i/sqrt 3 right) $$
                – Robert Israel
                5 hours ago











              • @RobertIsrael Isn't there a functional equation for dilogarithms where you can simplify the last two terms into a real term? Or am I mistaken?
                – Frank W.
                5 hours ago










              • @FrankW. I don't know of one. Using the definition of dilog just gets me back to an integral similar to the one we started with.
                – Robert Israel
                2 hours ago










              • @RobertIsrael Okay, maybe I'm thinking of something else.
                – Frank W.
                1 hour ago
















              • Thanks you for this ... I will try to neaten up these dilogarithms.
                – Donald Splutterwit
                5 hours ago






              • 1




                With Maple 2018 I get $$-frac left( ln left( 3 right) right) ^24+frac 5,pi^2 36+ln left( 2 right) ln left( 3 right) -rm dilog left( i/sqrt 3 right) -rm dilog left( -i/sqrt 3 right) $$
                – Robert Israel
                5 hours ago











              • @RobertIsrael Isn't there a functional equation for dilogarithms where you can simplify the last two terms into a real term? Or am I mistaken?
                – Frank W.
                5 hours ago










              • @FrankW. I don't know of one. Using the definition of dilog just gets me back to an integral similar to the one we started with.
                – Robert Israel
                2 hours ago










              • @RobertIsrael Okay, maybe I'm thinking of something else.
                – Frank W.
                1 hour ago















              Thanks you for this ... I will try to neaten up these dilogarithms.
              – Donald Splutterwit
              5 hours ago




              Thanks you for this ... I will try to neaten up these dilogarithms.
              – Donald Splutterwit
              5 hours ago




              1




              1




              With Maple 2018 I get $$-frac left( ln left( 3 right) right) ^24+frac 5,pi^2 36+ln left( 2 right) ln left( 3 right) -rm dilog left( i/sqrt 3 right) -rm dilog left( -i/sqrt 3 right) $$
              – Robert Israel
              5 hours ago





              With Maple 2018 I get $$-frac left( ln left( 3 right) right) ^24+frac 5,pi^2 36+ln left( 2 right) ln left( 3 right) -rm dilog left( i/sqrt 3 right) -rm dilog left( -i/sqrt 3 right) $$
              – Robert Israel
              5 hours ago













              @RobertIsrael Isn't there a functional equation for dilogarithms where you can simplify the last two terms into a real term? Or am I mistaken?
              – Frank W.
              5 hours ago




              @RobertIsrael Isn't there a functional equation for dilogarithms where you can simplify the last two terms into a real term? Or am I mistaken?
              – Frank W.
              5 hours ago












              @FrankW. I don't know of one. Using the definition of dilog just gets me back to an integral similar to the one we started with.
              – Robert Israel
              2 hours ago




              @FrankW. I don't know of one. Using the definition of dilog just gets me back to an integral similar to the one we started with.
              – Robert Israel
              2 hours ago












              @RobertIsrael Okay, maybe I'm thinking of something else.
              – Frank W.
              1 hour ago




              @RobertIsrael Okay, maybe I'm thinking of something else.
              – Frank W.
              1 hour ago










              up vote
              2
              down vote













              This integral won't evaluate to anything pretty, but we can write it in terms of the dilogarithm $operatorname Li_2(x)$. Factoring a $-2$ out of the numerator and completing the square in the denominator gives us:



              $$int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy = -2int_0^1 frac (y-frac12)ln(1+y)(y-frac12)^2 +frac34 dy.$$



              Then apply the substitution $x=y-frac12$.



              $$int_-frac 12^frac 12 fracx ln(x+ frac32)x^2+ frac 34dx = int_-frac 12^frac 12 overbraceln(x+ frac32)^u cdot underbrace frac xx^2+ frac 34 dx _dv$$ Integration by parts show the original integral is equivalent to $displaystyle int_-frac 12^frac12 fracln(x^2+frac34)x+frac 32dx$. Now we can introduce yet another substitution, say $z=x+frac 32$. Now we get:



              $$int_1^2 frac ln bigl((z- frac 32)^2 + frac 34big)zdz$$
              We can factor the sum of squares by using the fact that $a^2 +b^2 = (a+bi)(a-bi)$.
              $$int_1^2 frac lnbig((z- frac 32 + frac sqrt 32i)(z- frac 32 - frac sqrt 32i)big)zdz$$



              Using the log rules, you can rewrite this as the sum of two integrals:
              $$int_1^2 frac ln(z- frac 32 + frac sqrt 32i)zdz + int_1^2 frac ln (z- frac 32 - frac sqrt 32i)zdz tag1$$



              Now lets look for a general solution to $displaystyle int_1^2 frac ln (x+a)xdx $, where $a$ is any constant.
              $$int_1^2 frac ln (x+a)xdx = int_1^2 frac lnbig(a(frac xa +1)big)xdx = ln(a) int_1^2 frac dxx+ int_1^2 frac ln(frac xa +1)x dx.$$ Apply the substitution $u = - frac xa$. This changes it to:



              $$ ln(a)ln(2)+ int frac ln(1-u)u du = Big[ln(a)ln(x)+ operatorname Li_2 (- frac xa)+ CBig]_1^2$$
              $$ int_1^2 frac ln (x+a)xdx =ln(a)ln(2)+ operatorname Li_2 (- frac 2a)- operatorname Li_2 (-frac 1a) tag2$$



              Now, putting (2) into (1) yields:



              $$ ln(- frac 32 + frac sqrt 32i)ln(2)+ operatorname Li_2 (- frac 2- frac 32 + frac sqrt 32i)- operatorname Li_2 (-frac 1- frac 32 + frac sqrt 32i) + ln(- frac 32 - frac sqrt 32i)ln(2)+ operatorname Li_2 ( frac 2 frac 32 + frac sqrt 32i)- operatorname Li_2 (frac 1 frac 32 + frac sqrt 32i) $$



              There's probably a way to simplify this, but I bet it's very tedious. The imaginary part should end up being 0.






              share|cite|improve this answer
























                up vote
                2
                down vote













                This integral won't evaluate to anything pretty, but we can write it in terms of the dilogarithm $operatorname Li_2(x)$. Factoring a $-2$ out of the numerator and completing the square in the denominator gives us:



                $$int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy = -2int_0^1 frac (y-frac12)ln(1+y)(y-frac12)^2 +frac34 dy.$$



                Then apply the substitution $x=y-frac12$.



                $$int_-frac 12^frac 12 fracx ln(x+ frac32)x^2+ frac 34dx = int_-frac 12^frac 12 overbraceln(x+ frac32)^u cdot underbrace frac xx^2+ frac 34 dx _dv$$ Integration by parts show the original integral is equivalent to $displaystyle int_-frac 12^frac12 fracln(x^2+frac34)x+frac 32dx$. Now we can introduce yet another substitution, say $z=x+frac 32$. Now we get:



                $$int_1^2 frac ln bigl((z- frac 32)^2 + frac 34big)zdz$$
                We can factor the sum of squares by using the fact that $a^2 +b^2 = (a+bi)(a-bi)$.
                $$int_1^2 frac lnbig((z- frac 32 + frac sqrt 32i)(z- frac 32 - frac sqrt 32i)big)zdz$$



                Using the log rules, you can rewrite this as the sum of two integrals:
                $$int_1^2 frac ln(z- frac 32 + frac sqrt 32i)zdz + int_1^2 frac ln (z- frac 32 - frac sqrt 32i)zdz tag1$$



                Now lets look for a general solution to $displaystyle int_1^2 frac ln (x+a)xdx $, where $a$ is any constant.
                $$int_1^2 frac ln (x+a)xdx = int_1^2 frac lnbig(a(frac xa +1)big)xdx = ln(a) int_1^2 frac dxx+ int_1^2 frac ln(frac xa +1)x dx.$$ Apply the substitution $u = - frac xa$. This changes it to:



                $$ ln(a)ln(2)+ int frac ln(1-u)u du = Big[ln(a)ln(x)+ operatorname Li_2 (- frac xa)+ CBig]_1^2$$
                $$ int_1^2 frac ln (x+a)xdx =ln(a)ln(2)+ operatorname Li_2 (- frac 2a)- operatorname Li_2 (-frac 1a) tag2$$



                Now, putting (2) into (1) yields:



                $$ ln(- frac 32 + frac sqrt 32i)ln(2)+ operatorname Li_2 (- frac 2- frac 32 + frac sqrt 32i)- operatorname Li_2 (-frac 1- frac 32 + frac sqrt 32i) + ln(- frac 32 - frac sqrt 32i)ln(2)+ operatorname Li_2 ( frac 2 frac 32 + frac sqrt 32i)- operatorname Li_2 (frac 1 frac 32 + frac sqrt 32i) $$



                There's probably a way to simplify this, but I bet it's very tedious. The imaginary part should end up being 0.






                share|cite|improve this answer






















                  up vote
                  2
                  down vote










                  up vote
                  2
                  down vote









                  This integral won't evaluate to anything pretty, but we can write it in terms of the dilogarithm $operatorname Li_2(x)$. Factoring a $-2$ out of the numerator and completing the square in the denominator gives us:



                  $$int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy = -2int_0^1 frac (y-frac12)ln(1+y)(y-frac12)^2 +frac34 dy.$$



                  Then apply the substitution $x=y-frac12$.



                  $$int_-frac 12^frac 12 fracx ln(x+ frac32)x^2+ frac 34dx = int_-frac 12^frac 12 overbraceln(x+ frac32)^u cdot underbrace frac xx^2+ frac 34 dx _dv$$ Integration by parts show the original integral is equivalent to $displaystyle int_-frac 12^frac12 fracln(x^2+frac34)x+frac 32dx$. Now we can introduce yet another substitution, say $z=x+frac 32$. Now we get:



                  $$int_1^2 frac ln bigl((z- frac 32)^2 + frac 34big)zdz$$
                  We can factor the sum of squares by using the fact that $a^2 +b^2 = (a+bi)(a-bi)$.
                  $$int_1^2 frac lnbig((z- frac 32 + frac sqrt 32i)(z- frac 32 - frac sqrt 32i)big)zdz$$



                  Using the log rules, you can rewrite this as the sum of two integrals:
                  $$int_1^2 frac ln(z- frac 32 + frac sqrt 32i)zdz + int_1^2 frac ln (z- frac 32 - frac sqrt 32i)zdz tag1$$



                  Now lets look for a general solution to $displaystyle int_1^2 frac ln (x+a)xdx $, where $a$ is any constant.
                  $$int_1^2 frac ln (x+a)xdx = int_1^2 frac lnbig(a(frac xa +1)big)xdx = ln(a) int_1^2 frac dxx+ int_1^2 frac ln(frac xa +1)x dx.$$ Apply the substitution $u = - frac xa$. This changes it to:



                  $$ ln(a)ln(2)+ int frac ln(1-u)u du = Big[ln(a)ln(x)+ operatorname Li_2 (- frac xa)+ CBig]_1^2$$
                  $$ int_1^2 frac ln (x+a)xdx =ln(a)ln(2)+ operatorname Li_2 (- frac 2a)- operatorname Li_2 (-frac 1a) tag2$$



                  Now, putting (2) into (1) yields:



                  $$ ln(- frac 32 + frac sqrt 32i)ln(2)+ operatorname Li_2 (- frac 2- frac 32 + frac sqrt 32i)- operatorname Li_2 (-frac 1- frac 32 + frac sqrt 32i) + ln(- frac 32 - frac sqrt 32i)ln(2)+ operatorname Li_2 ( frac 2 frac 32 + frac sqrt 32i)- operatorname Li_2 (frac 1 frac 32 + frac sqrt 32i) $$



                  There's probably a way to simplify this, but I bet it's very tedious. The imaginary part should end up being 0.






                  share|cite|improve this answer












                  This integral won't evaluate to anything pretty, but we can write it in terms of the dilogarithm $operatorname Li_2(x)$. Factoring a $-2$ out of the numerator and completing the square in the denominator gives us:



                  $$int_0^1 frac (1-2y)ln(1+y)1-y+y^2 dy = -2int_0^1 frac (y-frac12)ln(1+y)(y-frac12)^2 +frac34 dy.$$



                  Then apply the substitution $x=y-frac12$.



                  $$int_-frac 12^frac 12 fracx ln(x+ frac32)x^2+ frac 34dx = int_-frac 12^frac 12 overbraceln(x+ frac32)^u cdot underbrace frac xx^2+ frac 34 dx _dv$$ Integration by parts show the original integral is equivalent to $displaystyle int_-frac 12^frac12 fracln(x^2+frac34)x+frac 32dx$. Now we can introduce yet another substitution, say $z=x+frac 32$. Now we get:



                  $$int_1^2 frac ln bigl((z- frac 32)^2 + frac 34big)zdz$$
                  We can factor the sum of squares by using the fact that $a^2 +b^2 = (a+bi)(a-bi)$.
                  $$int_1^2 frac lnbig((z- frac 32 + frac sqrt 32i)(z- frac 32 - frac sqrt 32i)big)zdz$$



                  Using the log rules, you can rewrite this as the sum of two integrals:
                  $$int_1^2 frac ln(z- frac 32 + frac sqrt 32i)zdz + int_1^2 frac ln (z- frac 32 - frac sqrt 32i)zdz tag1$$



                  Now lets look for a general solution to $displaystyle int_1^2 frac ln (x+a)xdx $, where $a$ is any constant.
                  $$int_1^2 frac ln (x+a)xdx = int_1^2 frac lnbig(a(frac xa +1)big)xdx = ln(a) int_1^2 frac dxx+ int_1^2 frac ln(frac xa +1)x dx.$$ Apply the substitution $u = - frac xa$. This changes it to:



                  $$ ln(a)ln(2)+ int frac ln(1-u)u du = Big[ln(a)ln(x)+ operatorname Li_2 (- frac xa)+ CBig]_1^2$$
                  $$ int_1^2 frac ln (x+a)xdx =ln(a)ln(2)+ operatorname Li_2 (- frac 2a)- operatorname Li_2 (-frac 1a) tag2$$



                  Now, putting (2) into (1) yields:



                  $$ ln(- frac 32 + frac sqrt 32i)ln(2)+ operatorname Li_2 (- frac 2- frac 32 + frac sqrt 32i)- operatorname Li_2 (-frac 1- frac 32 + frac sqrt 32i) + ln(- frac 32 - frac sqrt 32i)ln(2)+ operatorname Li_2 ( frac 2 frac 32 + frac sqrt 32i)- operatorname Li_2 (frac 1 frac 32 + frac sqrt 32i) $$



                  There's probably a way to simplify this, but I bet it's very tedious. The imaginary part should end up being 0.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  guy600

                  655




                  655




















                      up vote
                      1
                      down vote














                      $$intlimits_0^1mathrm dx,frac log(1+x^3)1+xcolorblue=frac 12operatornameLi_2left(-frac 13right)+frac 14log^23+frac 12log^22-frac pi^236$$Confirmed by Wolfram Alpha.




                      Call the integral $mathfrakI$ and make the transformation $xmapstotfrac 1-x1+x$. What's left is$$mathfrakI=log^22+intlimits_0^1mathrm dx,frac log(1+3x^2)1+x-3intlimits_0^1mathrm dx,frac log(1+x)1+x$$
                      The last integral is trivially equal to$$intlimits_0^1mathrm dx,frac log(1+x)1+xcolorred=frac 12log^22$$The middle integral is difficult and I am still not aware of a full solution to the integral by hand. Replace the three with a parameter say, $a$, and differentiate with respect to $a$$$mathfrakI(a)=intlimits_0^1mathrm dxspacefrac log(1+ax^2)1+x$$Thus$$beginalign*mathfrakI'(a) & =intlimits_0^1mathrm dxspaceleft[frac 1(1+a)(1+x)+frac x(1+a)(1+ax^2)-frac 1(1+a)(1+ax^2)right]\ & =frac 11+alog 2+frac log(1+a)2a(1+a)-frac 1sqrt a(1+a)arctansqrt aendalign*$$Integrate both sides with respect to $a$ and from zero to three to get (I used Wolfram Alpha on this step)$$intlimits_0^1mathrm dxspacefrac log(1+3x^2)1+xcolorbrown=log^22+frac 12operatornameLi_2left(-frac 13right)+frac 14log^23-frac pi^236$$Now add everything together and you should get the result I stated at the beginning of my answer.






                      share|cite|improve this answer
























                        up vote
                        1
                        down vote














                        $$intlimits_0^1mathrm dx,frac log(1+x^3)1+xcolorblue=frac 12operatornameLi_2left(-frac 13right)+frac 14log^23+frac 12log^22-frac pi^236$$Confirmed by Wolfram Alpha.




                        Call the integral $mathfrakI$ and make the transformation $xmapstotfrac 1-x1+x$. What's left is$$mathfrakI=log^22+intlimits_0^1mathrm dx,frac log(1+3x^2)1+x-3intlimits_0^1mathrm dx,frac log(1+x)1+x$$
                        The last integral is trivially equal to$$intlimits_0^1mathrm dx,frac log(1+x)1+xcolorred=frac 12log^22$$The middle integral is difficult and I am still not aware of a full solution to the integral by hand. Replace the three with a parameter say, $a$, and differentiate with respect to $a$$$mathfrakI(a)=intlimits_0^1mathrm dxspacefrac log(1+ax^2)1+x$$Thus$$beginalign*mathfrakI'(a) & =intlimits_0^1mathrm dxspaceleft[frac 1(1+a)(1+x)+frac x(1+a)(1+ax^2)-frac 1(1+a)(1+ax^2)right]\ & =frac 11+alog 2+frac log(1+a)2a(1+a)-frac 1sqrt a(1+a)arctansqrt aendalign*$$Integrate both sides with respect to $a$ and from zero to three to get (I used Wolfram Alpha on this step)$$intlimits_0^1mathrm dxspacefrac log(1+3x^2)1+xcolorbrown=log^22+frac 12operatornameLi_2left(-frac 13right)+frac 14log^23-frac pi^236$$Now add everything together and you should get the result I stated at the beginning of my answer.






                        share|cite|improve this answer






















                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote










                          $$intlimits_0^1mathrm dx,frac log(1+x^3)1+xcolorblue=frac 12operatornameLi_2left(-frac 13right)+frac 14log^23+frac 12log^22-frac pi^236$$Confirmed by Wolfram Alpha.




                          Call the integral $mathfrakI$ and make the transformation $xmapstotfrac 1-x1+x$. What's left is$$mathfrakI=log^22+intlimits_0^1mathrm dx,frac log(1+3x^2)1+x-3intlimits_0^1mathrm dx,frac log(1+x)1+x$$
                          The last integral is trivially equal to$$intlimits_0^1mathrm dx,frac log(1+x)1+xcolorred=frac 12log^22$$The middle integral is difficult and I am still not aware of a full solution to the integral by hand. Replace the three with a parameter say, $a$, and differentiate with respect to $a$$$mathfrakI(a)=intlimits_0^1mathrm dxspacefrac log(1+ax^2)1+x$$Thus$$beginalign*mathfrakI'(a) & =intlimits_0^1mathrm dxspaceleft[frac 1(1+a)(1+x)+frac x(1+a)(1+ax^2)-frac 1(1+a)(1+ax^2)right]\ & =frac 11+alog 2+frac log(1+a)2a(1+a)-frac 1sqrt a(1+a)arctansqrt aendalign*$$Integrate both sides with respect to $a$ and from zero to three to get (I used Wolfram Alpha on this step)$$intlimits_0^1mathrm dxspacefrac log(1+3x^2)1+xcolorbrown=log^22+frac 12operatornameLi_2left(-frac 13right)+frac 14log^23-frac pi^236$$Now add everything together and you should get the result I stated at the beginning of my answer.






                          share|cite|improve this answer













                          $$intlimits_0^1mathrm dx,frac log(1+x^3)1+xcolorblue=frac 12operatornameLi_2left(-frac 13right)+frac 14log^23+frac 12log^22-frac pi^236$$Confirmed by Wolfram Alpha.




                          Call the integral $mathfrakI$ and make the transformation $xmapstotfrac 1-x1+x$. What's left is$$mathfrakI=log^22+intlimits_0^1mathrm dx,frac log(1+3x^2)1+x-3intlimits_0^1mathrm dx,frac log(1+x)1+x$$
                          The last integral is trivially equal to$$intlimits_0^1mathrm dx,frac log(1+x)1+xcolorred=frac 12log^22$$The middle integral is difficult and I am still not aware of a full solution to the integral by hand. Replace the three with a parameter say, $a$, and differentiate with respect to $a$$$mathfrakI(a)=intlimits_0^1mathrm dxspacefrac log(1+ax^2)1+x$$Thus$$beginalign*mathfrakI'(a) & =intlimits_0^1mathrm dxspaceleft[frac 1(1+a)(1+x)+frac x(1+a)(1+ax^2)-frac 1(1+a)(1+ax^2)right]\ & =frac 11+alog 2+frac log(1+a)2a(1+a)-frac 1sqrt a(1+a)arctansqrt aendalign*$$Integrate both sides with respect to $a$ and from zero to three to get (I used Wolfram Alpha on this step)$$intlimits_0^1mathrm dxspacefrac log(1+3x^2)1+xcolorbrown=log^22+frac 12operatornameLi_2left(-frac 13right)+frac 14log^23-frac pi^236$$Now add everything together and you should get the result I stated at the beginning of my answer.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 1 hour ago









                          Frank W.

                          2,1461315




                          2,1461315



























                               

                              draft saved


                              draft discarded















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2916062%2fa-double-sum-or-a-definite-integral%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              Long meetings (6-7 hours a day): Being “babysat” by supervisor

                              Is the Concept of Multiple Fantasy Races Scientifically Flawed? [closed]

                              Confectionery