How to combine 2d circle graph (with point which is rounded) into helix 3d graph (motion of particle along circle in the world line)
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Manipulate[Graphics[Circle, Red, PointSize@.05, Point@Cos[x], Sin[x]],
x, 0, 2 Pi]
and
Manipulate[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a], a, 1, 4]
graphics3d
New contributor
add a comment |Â
up vote
2
down vote
favorite
Manipulate[Graphics[Circle, Red, PointSize@.05, Point@Cos[x], Sin[x]],
x, 0, 2 Pi]
and
Manipulate[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a], a, 1, 4]
graphics3d
New contributor
Circle
is not compatible withParametricPlot3D
. You can useParametricPlot3D
to plot a circle, however.
â J. M. is somewhat okay.â¦
2 hours ago
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Manipulate[Graphics[Circle, Red, PointSize@.05, Point@Cos[x], Sin[x]],
x, 0, 2 Pi]
and
Manipulate[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a], a, 1, 4]
graphics3d
New contributor
Manipulate[Graphics[Circle, Red, PointSize@.05, Point@Cos[x], Sin[x]],
x, 0, 2 Pi]
and
Manipulate[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a], a, 1, 4]
graphics3d
graphics3d
New contributor
New contributor
edited 17 mins ago
kglr
163k8188387
163k8188387
New contributor
asked 2 hours ago
Max
111
111
New contributor
New contributor
Circle
is not compatible withParametricPlot3D
. You can useParametricPlot3D
to plot a circle, however.
â J. M. is somewhat okay.â¦
2 hours ago
add a comment |Â
Circle
is not compatible withParametricPlot3D
. You can useParametricPlot3D
to plot a circle, however.
â J. M. is somewhat okay.â¦
2 hours ago
Circle
is not compatible with ParametricPlot3D
. You can use ParametricPlot3D
to plot a circle, however.â J. M. is somewhat okay.â¦
2 hours ago
Circle
is not compatible with ParametricPlot3D
. You can use ParametricPlot3D
to plot a circle, however.â J. M. is somewhat okay.â¦
2 hours ago
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
Is this, what you are trying to get:
Manipulate[
Show[
ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 Pi],
ParametricPlot3D[Cos[t], Sin[t], 0, t, 0, 2 Pi,
PlotStyle -> Gray],
Graphics3D[PointSize[0.03], Gray, Point[Cos[a], Sin[a], 0], Red,
Point[Cos[a], Sin[a], a/4], Dashed,
Line[Cos[a], Sin[a], 0, Cos[a], Sin[a], a/4]]
],
a, 0.1, 0, 6]
yielding the following:
Have fun!
add a comment |Â
up vote
2
down vote
Manipulate[Show[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a,
MeshFunctions -> #4 &, Mesh -> 2 ÃÂ a - 1/10000 ,
MeshStyle -> Directive[Red, PointSize[Large]],
PerformanceGoal -> "Quality"],
ParametricPlot3D[r Cos[t], r Sin[t], ÃÂ a/2, t, 0, 2 ÃÂ , r, 0, 1,
PlotStyle -> Opacity[.5],
MeshFunctions -> #5 &, Mesh -> 1 - 1/10000,
MeshStyle -> Red,
BoundaryStyle -> None, PerformanceGoal -> "Quality"],
PlotRange -> 0, 2 Pi], a, 1, 4]
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Is this, what you are trying to get:
Manipulate[
Show[
ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 Pi],
ParametricPlot3D[Cos[t], Sin[t], 0, t, 0, 2 Pi,
PlotStyle -> Gray],
Graphics3D[PointSize[0.03], Gray, Point[Cos[a], Sin[a], 0], Red,
Point[Cos[a], Sin[a], a/4], Dashed,
Line[Cos[a], Sin[a], 0, Cos[a], Sin[a], a/4]]
],
a, 0.1, 0, 6]
yielding the following:
Have fun!
add a comment |Â
up vote
2
down vote
Is this, what you are trying to get:
Manipulate[
Show[
ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 Pi],
ParametricPlot3D[Cos[t], Sin[t], 0, t, 0, 2 Pi,
PlotStyle -> Gray],
Graphics3D[PointSize[0.03], Gray, Point[Cos[a], Sin[a], 0], Red,
Point[Cos[a], Sin[a], a/4], Dashed,
Line[Cos[a], Sin[a], 0, Cos[a], Sin[a], a/4]]
],
a, 0.1, 0, 6]
yielding the following:
Have fun!
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Is this, what you are trying to get:
Manipulate[
Show[
ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 Pi],
ParametricPlot3D[Cos[t], Sin[t], 0, t, 0, 2 Pi,
PlotStyle -> Gray],
Graphics3D[PointSize[0.03], Gray, Point[Cos[a], Sin[a], 0], Red,
Point[Cos[a], Sin[a], a/4], Dashed,
Line[Cos[a], Sin[a], 0, Cos[a], Sin[a], a/4]]
],
a, 0.1, 0, 6]
yielding the following:
Have fun!
Is this, what you are trying to get:
Manipulate[
Show[
ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 Pi],
ParametricPlot3D[Cos[t], Sin[t], 0, t, 0, 2 Pi,
PlotStyle -> Gray],
Graphics3D[PointSize[0.03], Gray, Point[Cos[a], Sin[a], 0], Red,
Point[Cos[a], Sin[a], a/4], Dashed,
Line[Cos[a], Sin[a], 0, Cos[a], Sin[a], a/4]]
],
a, 0.1, 0, 6]
yielding the following:
Have fun!
answered 2 hours ago
Alexei Boulbitch
20.5k2369
20.5k2369
add a comment |Â
add a comment |Â
up vote
2
down vote
Manipulate[Show[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a,
MeshFunctions -> #4 &, Mesh -> 2 ÃÂ a - 1/10000 ,
MeshStyle -> Directive[Red, PointSize[Large]],
PerformanceGoal -> "Quality"],
ParametricPlot3D[r Cos[t], r Sin[t], ÃÂ a/2, t, 0, 2 ÃÂ , r, 0, 1,
PlotStyle -> Opacity[.5],
MeshFunctions -> #5 &, Mesh -> 1 - 1/10000,
MeshStyle -> Red,
BoundaryStyle -> None, PerformanceGoal -> "Quality"],
PlotRange -> 0, 2 Pi], a, 1, 4]
add a comment |Â
up vote
2
down vote
Manipulate[Show[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a,
MeshFunctions -> #4 &, Mesh -> 2 ÃÂ a - 1/10000 ,
MeshStyle -> Directive[Red, PointSize[Large]],
PerformanceGoal -> "Quality"],
ParametricPlot3D[r Cos[t], r Sin[t], ÃÂ a/2, t, 0, 2 ÃÂ , r, 0, 1,
PlotStyle -> Opacity[.5],
MeshFunctions -> #5 &, Mesh -> 1 - 1/10000,
MeshStyle -> Red,
BoundaryStyle -> None, PerformanceGoal -> "Quality"],
PlotRange -> 0, 2 Pi], a, 1, 4]
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Manipulate[Show[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a,
MeshFunctions -> #4 &, Mesh -> 2 ÃÂ a - 1/10000 ,
MeshStyle -> Directive[Red, PointSize[Large]],
PerformanceGoal -> "Quality"],
ParametricPlot3D[r Cos[t], r Sin[t], ÃÂ a/2, t, 0, 2 ÃÂ , r, 0, 1,
PlotStyle -> Opacity[.5],
MeshFunctions -> #5 &, Mesh -> 1 - 1/10000,
MeshStyle -> Red,
BoundaryStyle -> None, PerformanceGoal -> "Quality"],
PlotRange -> 0, 2 Pi], a, 1, 4]
Manipulate[Show[ParametricPlot3D[Cos[t], Sin[t], t/4, t, 0, 2 ÃÂ a,
MeshFunctions -> #4 &, Mesh -> 2 ÃÂ a - 1/10000 ,
MeshStyle -> Directive[Red, PointSize[Large]],
PerformanceGoal -> "Quality"],
ParametricPlot3D[r Cos[t], r Sin[t], ÃÂ a/2, t, 0, 2 ÃÂ , r, 0, 1,
PlotStyle -> Opacity[.5],
MeshFunctions -> #5 &, Mesh -> 1 - 1/10000,
MeshStyle -> Red,
BoundaryStyle -> None, PerformanceGoal -> "Quality"],
PlotRange -> 0, 2 Pi], a, 1, 4]
answered 1 hour ago
kglr
163k8188387
163k8188387
add a comment |Â
add a comment |Â
Max is a new contributor. Be nice, and check out our Code of Conduct.
Â
draft saved
draft discarded
Max is a new contributor. Be nice, and check out our Code of Conduct.
Max is a new contributor. Be nice, and check out our Code of Conduct.
Max is a new contributor. Be nice, and check out our Code of Conduct.
Â
draft saved
draft discarded
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f183099%2fhow-to-combine-2d-circle-graph-with-point-which-is-rounded-into-helix-3d-graph%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Circle
is not compatible withParametricPlot3D
. You can useParametricPlot3D
to plot a circle, however.â J. M. is somewhat okay.â¦
2 hours ago