Help find the mistake in this problem of finding limit (using L'Hopital)
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Evaluate $$lim_x to 0 left(frac1x^2-cot^2xright).$$
Attempt
beginalign*
&lim_x to 0 left(frac1x^2-cot^2xright)\
= &lim_x to 0 left(frac1x-cotxright)left(frac1x+cotxright)\
= &lim_x to 0 left(fracsinx+xcosxxsinxright)left(fracsinx-xcosxxsinxright)\
= &lim_x to 0 left(fracsinx+xcosxxsinxright) times lim_x to 0left(fracsinx-xcosxxsinxright).
endalign*
Both the terms are in $frac00$ form. So applying L'Hopital on both the limits we have,
$$= lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times lim_x to 0left(fracxsinxxcosx+sinxright).$$
The second term is in $frac00$ form. So applying L'Hopital on the second limit we have,
beginalign*
= &lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times lim_x to 0left(fracxcosx+sinx2cosx-xsinxright)\
=& lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times left(fracxcosx+sinx2cosx-xsinxright)\
=& 1
endalign*
The correct answer is $dfrac23$ which can be found using series expansion. But I think I'm making a conceptual mistake in one of the above steps. Could you please point out to the specific step where I've committed a mistake in above solution?
limits
add a comment |Â
up vote
3
down vote
favorite
Evaluate $$lim_x to 0 left(frac1x^2-cot^2xright).$$
Attempt
beginalign*
&lim_x to 0 left(frac1x^2-cot^2xright)\
= &lim_x to 0 left(frac1x-cotxright)left(frac1x+cotxright)\
= &lim_x to 0 left(fracsinx+xcosxxsinxright)left(fracsinx-xcosxxsinxright)\
= &lim_x to 0 left(fracsinx+xcosxxsinxright) times lim_x to 0left(fracsinx-xcosxxsinxright).
endalign*
Both the terms are in $frac00$ form. So applying L'Hopital on both the limits we have,
$$= lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times lim_x to 0left(fracxsinxxcosx+sinxright).$$
The second term is in $frac00$ form. So applying L'Hopital on the second limit we have,
beginalign*
= &lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times lim_x to 0left(fracxcosx+sinx2cosx-xsinxright)\
=& lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times left(fracxcosx+sinx2cosx-xsinxright)\
=& 1
endalign*
The correct answer is $dfrac23$ which can be found using series expansion. But I think I'm making a conceptual mistake in one of the above steps. Could you please point out to the specific step where I've committed a mistake in above solution?
limits
The = on the last 2nd line. Generally speaking, you could do that if both the limit exists. In your case, that is not fully justified.
– xbh
5 hours ago
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Evaluate $$lim_x to 0 left(frac1x^2-cot^2xright).$$
Attempt
beginalign*
&lim_x to 0 left(frac1x^2-cot^2xright)\
= &lim_x to 0 left(frac1x-cotxright)left(frac1x+cotxright)\
= &lim_x to 0 left(fracsinx+xcosxxsinxright)left(fracsinx-xcosxxsinxright)\
= &lim_x to 0 left(fracsinx+xcosxxsinxright) times lim_x to 0left(fracsinx-xcosxxsinxright).
endalign*
Both the terms are in $frac00$ form. So applying L'Hopital on both the limits we have,
$$= lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times lim_x to 0left(fracxsinxxcosx+sinxright).$$
The second term is in $frac00$ form. So applying L'Hopital on the second limit we have,
beginalign*
= &lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times lim_x to 0left(fracxcosx+sinx2cosx-xsinxright)\
=& lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times left(fracxcosx+sinx2cosx-xsinxright)\
=& 1
endalign*
The correct answer is $dfrac23$ which can be found using series expansion. But I think I'm making a conceptual mistake in one of the above steps. Could you please point out to the specific step where I've committed a mistake in above solution?
limits
Evaluate $$lim_x to 0 left(frac1x^2-cot^2xright).$$
Attempt
beginalign*
&lim_x to 0 left(frac1x^2-cot^2xright)\
= &lim_x to 0 left(frac1x-cotxright)left(frac1x+cotxright)\
= &lim_x to 0 left(fracsinx+xcosxxsinxright)left(fracsinx-xcosxxsinxright)\
= &lim_x to 0 left(fracsinx+xcosxxsinxright) times lim_x to 0left(fracsinx-xcosxxsinxright).
endalign*
Both the terms are in $frac00$ form. So applying L'Hopital on both the limits we have,
$$= lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times lim_x to 0left(fracxsinxxcosx+sinxright).$$
The second term is in $frac00$ form. So applying L'Hopital on the second limit we have,
beginalign*
= &lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times lim_x to 0left(fracxcosx+sinx2cosx-xsinxright)\
=& lim_x to 0 left(frac2cosx-xsinxxcosx+sinxright) times left(fracxcosx+sinx2cosx-xsinxright)\
=& 1
endalign*
The correct answer is $dfrac23$ which can be found using series expansion. But I think I'm making a conceptual mistake in one of the above steps. Could you please point out to the specific step where I've committed a mistake in above solution?
limits
limits
edited 17 mins ago
Manuel J. Diaz
1032
1032
asked 5 hours ago
yathish
18011
18011
The = on the last 2nd line. Generally speaking, you could do that if both the limit exists. In your case, that is not fully justified.
– xbh
5 hours ago
add a comment |Â
The = on the last 2nd line. Generally speaking, you could do that if both the limit exists. In your case, that is not fully justified.
– xbh
5 hours ago
The = on the last 2nd line. Generally speaking, you could do that if both the limit exists. In your case, that is not fully justified.
– xbh
5 hours ago
The = on the last 2nd line. Generally speaking, you could do that if both the limit exists. In your case, that is not fully justified.
– xbh
5 hours ago
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
3
down vote
beginalignlim_xto0frac1x+cot x&=lim_xto0fracsin x+xcos xxsin x\&=lim_xto0frac2cos x-xsin xsin x+xcos x\&=infty.endalignBesides,$$lim_xto0frac1x-cot x=0.$$
add a comment |Â
up vote
3
down vote
Both the terms are in 0/0 form. So applying L'Hospital on both the limits we have,
$= lim_x to 0 (frac2cosx-xsinxxcosx+sinx) times lim_x to 0(fracxsinxxcosx+sinx)$
Note that the limit $lim_x to 0 (frac2cosx-xsinxxcosx+sinx)$ does not exist.
In fact, even before that $lim_x to 0 (fracsinx+xcosxxsinx)$ does not exist as well.
This is the graph of $fracsinx+xcosxxsinx$.
add a comment |Â
up vote
0
down vote
$$lim_xto0left(dfrac1x^2-dfrac1tan^2xright)=lim_xto0dfractan x-xx^3cdotlim_xto0dfractan x+ xxcdotleft(lim_xto0dfrac xtan xright)^2$$
Now the limit for the last two are too simple for L'hospital
For $lim_xto0dfractan x-xx^3$ either use L'hospital or Are all limits solvable without L'Hôpital Rule or Series Expansion
1
I don't think this fully answers OP's question.
– é«˜ç”°èˆª
5 hours ago
add a comment |Â
up vote
0
down vote
Similar work:
$$beginalignlim_x to 0 left(frac1x^2-cot^2xright)&=lim_x to 0 left(frac1x^2-frac1-sin^2xsin^2xright)=\
&=lim_x to 0left(frac1x^2-frac1sin^2x+1right)=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xright)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xcdot fracsin^2xx^2right)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1.
endalign$$
According to the algebraic limit theorem, you can express the limit as a product of two existing limits:
$$beginalignlim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1=&\
underbracelim_x to 0left(fracsin x-xx^3right)_-frac16cdot underbracelim_x to 0left(fracsin x+xxright)_=2 +1stackrelLR=&\
lim_x to 0left(fraccos x-13x^2right)cdot lim_x to 0left(fraccos x+11right) +1stackrelLR=&\
lim_x to 0left(frac-sin x6xright)cdot 2 +1=&\
-frac13+1=&frac23.endalign$$
However you can not express:
$$-frac13=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)=\
underbracelim_x to 0left(fracsin x-xx^colorred0right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue4right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred1right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue3right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred2right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue2right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred4right)_=inftycdot underbracelim_x to 0left(fracsin x+xx^colorblue0right)_=0.$$
because all are the indeterminate form of $0cdot infty$.
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
beginalignlim_xto0frac1x+cot x&=lim_xto0fracsin x+xcos xxsin x\&=lim_xto0frac2cos x-xsin xsin x+xcos x\&=infty.endalignBesides,$$lim_xto0frac1x-cot x=0.$$
add a comment |Â
up vote
3
down vote
beginalignlim_xto0frac1x+cot x&=lim_xto0fracsin x+xcos xxsin x\&=lim_xto0frac2cos x-xsin xsin x+xcos x\&=infty.endalignBesides,$$lim_xto0frac1x-cot x=0.$$
add a comment |Â
up vote
3
down vote
up vote
3
down vote
beginalignlim_xto0frac1x+cot x&=lim_xto0fracsin x+xcos xxsin x\&=lim_xto0frac2cos x-xsin xsin x+xcos x\&=infty.endalignBesides,$$lim_xto0frac1x-cot x=0.$$
beginalignlim_xto0frac1x+cot x&=lim_xto0fracsin x+xcos xxsin x\&=lim_xto0frac2cos x-xsin xsin x+xcos x\&=infty.endalignBesides,$$lim_xto0frac1x-cot x=0.$$
answered 5 hours ago


José Carlos Santos
132k17106193
132k17106193
add a comment |Â
add a comment |Â
up vote
3
down vote
Both the terms are in 0/0 form. So applying L'Hospital on both the limits we have,
$= lim_x to 0 (frac2cosx-xsinxxcosx+sinx) times lim_x to 0(fracxsinxxcosx+sinx)$
Note that the limit $lim_x to 0 (frac2cosx-xsinxxcosx+sinx)$ does not exist.
In fact, even before that $lim_x to 0 (fracsinx+xcosxxsinx)$ does not exist as well.
This is the graph of $fracsinx+xcosxxsinx$.
add a comment |Â
up vote
3
down vote
Both the terms are in 0/0 form. So applying L'Hospital on both the limits we have,
$= lim_x to 0 (frac2cosx-xsinxxcosx+sinx) times lim_x to 0(fracxsinxxcosx+sinx)$
Note that the limit $lim_x to 0 (frac2cosx-xsinxxcosx+sinx)$ does not exist.
In fact, even before that $lim_x to 0 (fracsinx+xcosxxsinx)$ does not exist as well.
This is the graph of $fracsinx+xcosxxsinx$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Both the terms are in 0/0 form. So applying L'Hospital on both the limits we have,
$= lim_x to 0 (frac2cosx-xsinxxcosx+sinx) times lim_x to 0(fracxsinxxcosx+sinx)$
Note that the limit $lim_x to 0 (frac2cosx-xsinxxcosx+sinx)$ does not exist.
In fact, even before that $lim_x to 0 (fracsinx+xcosxxsinx)$ does not exist as well.
This is the graph of $fracsinx+xcosxxsinx$.
Both the terms are in 0/0 form. So applying L'Hospital on both the limits we have,
$= lim_x to 0 (frac2cosx-xsinxxcosx+sinx) times lim_x to 0(fracxsinxxcosx+sinx)$
Note that the limit $lim_x to 0 (frac2cosx-xsinxxcosx+sinx)$ does not exist.
In fact, even before that $lim_x to 0 (fracsinx+xcosxxsinx)$ does not exist as well.
This is the graph of $fracsinx+xcosxxsinx$.
answered 5 hours ago


Siong Thye Goh
88.7k1460111
88.7k1460111
add a comment |Â
add a comment |Â
up vote
0
down vote
$$lim_xto0left(dfrac1x^2-dfrac1tan^2xright)=lim_xto0dfractan x-xx^3cdotlim_xto0dfractan x+ xxcdotleft(lim_xto0dfrac xtan xright)^2$$
Now the limit for the last two are too simple for L'hospital
For $lim_xto0dfractan x-xx^3$ either use L'hospital or Are all limits solvable without L'Hôpital Rule or Series Expansion
1
I don't think this fully answers OP's question.
– é«˜ç”°èˆª
5 hours ago
add a comment |Â
up vote
0
down vote
$$lim_xto0left(dfrac1x^2-dfrac1tan^2xright)=lim_xto0dfractan x-xx^3cdotlim_xto0dfractan x+ xxcdotleft(lim_xto0dfrac xtan xright)^2$$
Now the limit for the last two are too simple for L'hospital
For $lim_xto0dfractan x-xx^3$ either use L'hospital or Are all limits solvable without L'Hôpital Rule or Series Expansion
1
I don't think this fully answers OP's question.
– é«˜ç”°èˆª
5 hours ago
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$lim_xto0left(dfrac1x^2-dfrac1tan^2xright)=lim_xto0dfractan x-xx^3cdotlim_xto0dfractan x+ xxcdotleft(lim_xto0dfrac xtan xright)^2$$
Now the limit for the last two are too simple for L'hospital
For $lim_xto0dfractan x-xx^3$ either use L'hospital or Are all limits solvable without L'Hôpital Rule or Series Expansion
$$lim_xto0left(dfrac1x^2-dfrac1tan^2xright)=lim_xto0dfractan x-xx^3cdotlim_xto0dfractan x+ xxcdotleft(lim_xto0dfrac xtan xright)^2$$
Now the limit for the last two are too simple for L'hospital
For $lim_xto0dfractan x-xx^3$ either use L'hospital or Are all limits solvable without L'Hôpital Rule or Series Expansion
answered 5 hours ago
lab bhattacharjee
218k14153268
218k14153268
1
I don't think this fully answers OP's question.
– é«˜ç”°èˆª
5 hours ago
add a comment |Â
1
I don't think this fully answers OP's question.
– é«˜ç”°èˆª
5 hours ago
1
1
I don't think this fully answers OP's question.
– é«˜ç”°èˆª
5 hours ago
I don't think this fully answers OP's question.
– é«˜ç”°èˆª
5 hours ago
add a comment |Â
up vote
0
down vote
Similar work:
$$beginalignlim_x to 0 left(frac1x^2-cot^2xright)&=lim_x to 0 left(frac1x^2-frac1-sin^2xsin^2xright)=\
&=lim_x to 0left(frac1x^2-frac1sin^2x+1right)=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xright)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xcdot fracsin^2xx^2right)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1.
endalign$$
According to the algebraic limit theorem, you can express the limit as a product of two existing limits:
$$beginalignlim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1=&\
underbracelim_x to 0left(fracsin x-xx^3right)_-frac16cdot underbracelim_x to 0left(fracsin x+xxright)_=2 +1stackrelLR=&\
lim_x to 0left(fraccos x-13x^2right)cdot lim_x to 0left(fraccos x+11right) +1stackrelLR=&\
lim_x to 0left(frac-sin x6xright)cdot 2 +1=&\
-frac13+1=&frac23.endalign$$
However you can not express:
$$-frac13=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)=\
underbracelim_x to 0left(fracsin x-xx^colorred0right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue4right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred1right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue3right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred2right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue2right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred4right)_=inftycdot underbracelim_x to 0left(fracsin x+xx^colorblue0right)_=0.$$
because all are the indeterminate form of $0cdot infty$.
add a comment |Â
up vote
0
down vote
Similar work:
$$beginalignlim_x to 0 left(frac1x^2-cot^2xright)&=lim_x to 0 left(frac1x^2-frac1-sin^2xsin^2xright)=\
&=lim_x to 0left(frac1x^2-frac1sin^2x+1right)=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xright)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xcdot fracsin^2xx^2right)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1.
endalign$$
According to the algebraic limit theorem, you can express the limit as a product of two existing limits:
$$beginalignlim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1=&\
underbracelim_x to 0left(fracsin x-xx^3right)_-frac16cdot underbracelim_x to 0left(fracsin x+xxright)_=2 +1stackrelLR=&\
lim_x to 0left(fraccos x-13x^2right)cdot lim_x to 0left(fraccos x+11right) +1stackrelLR=&\
lim_x to 0left(frac-sin x6xright)cdot 2 +1=&\
-frac13+1=&frac23.endalign$$
However you can not express:
$$-frac13=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)=\
underbracelim_x to 0left(fracsin x-xx^colorred0right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue4right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred1right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue3right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred2right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue2right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred4right)_=inftycdot underbracelim_x to 0left(fracsin x+xx^colorblue0right)_=0.$$
because all are the indeterminate form of $0cdot infty$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Similar work:
$$beginalignlim_x to 0 left(frac1x^2-cot^2xright)&=lim_x to 0 left(frac1x^2-frac1-sin^2xsin^2xright)=\
&=lim_x to 0left(frac1x^2-frac1sin^2x+1right)=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xright)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xcdot fracsin^2xx^2right)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1.
endalign$$
According to the algebraic limit theorem, you can express the limit as a product of two existing limits:
$$beginalignlim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1=&\
underbracelim_x to 0left(fracsin x-xx^3right)_-frac16cdot underbracelim_x to 0left(fracsin x+xxright)_=2 +1stackrelLR=&\
lim_x to 0left(fraccos x-13x^2right)cdot lim_x to 0left(fraccos x+11right) +1stackrelLR=&\
lim_x to 0left(frac-sin x6xright)cdot 2 +1=&\
-frac13+1=&frac23.endalign$$
However you can not express:
$$-frac13=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)=\
underbracelim_x to 0left(fracsin x-xx^colorred0right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue4right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred1right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue3right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred2right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue2right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred4right)_=inftycdot underbracelim_x to 0left(fracsin x+xx^colorblue0right)_=0.$$
because all are the indeterminate form of $0cdot infty$.
Similar work:
$$beginalignlim_x to 0 left(frac1x^2-cot^2xright)&=lim_x to 0 left(frac1x^2-frac1-sin^2xsin^2xright)=\
&=lim_x to 0left(frac1x^2-frac1sin^2x+1right)=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xright)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^2sin^2xcdot fracsin^2xx^2right)+1=\
&=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1.
endalign$$
According to the algebraic limit theorem, you can express the limit as a product of two existing limits:
$$beginalignlim_x to 0left(frac(sin x-x)(sin x+x)x^4right)+1=&\
underbracelim_x to 0left(fracsin x-xx^3right)_-frac16cdot underbracelim_x to 0left(fracsin x+xxright)_=2 +1stackrelLR=&\
lim_x to 0left(fraccos x-13x^2right)cdot lim_x to 0left(fraccos x+11right) +1stackrelLR=&\
lim_x to 0left(frac-sin x6xright)cdot 2 +1=&\
-frac13+1=&frac23.endalign$$
However you can not express:
$$-frac13=lim_x to 0left(frac(sin x-x)(sin x+x)x^4right)=\
underbracelim_x to 0left(fracsin x-xx^colorred0right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue4right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred1right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue3right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred2right)_=0cdot underbracelim_x to 0left(fracsin x+xx^colorblue2right)_=infty textOR\
underbracelim_x to 0left(fracsin x-xx^colorred4right)_=inftycdot underbracelim_x to 0left(fracsin x+xx^colorblue0right)_=0.$$
because all are the indeterminate form of $0cdot infty$.
answered 4 hours ago


farruhota
16.6k2735
16.6k2735
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2968842%2fhelp-find-the-mistake-in-this-problem-of-finding-limit-using-lhopital%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
The = on the last 2nd line. Generally speaking, you could do that if both the limit exists. In your case, that is not fully justified.
– xbh
5 hours ago