Finding a quadratic equation using roots

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite













If $x_1$ and $x_2$ are the roots of
$$ax^2+bx+c=0$$
then $x_1^3$ and $x_2^3$ are the roots of which equation?




So I tried by solving this for $x_1/2$ so I could change it in $(x-x_1^3)(x-x_2^3)$



$x_1/2=large-bpmsqrt4acover2a$



and from here:



$$beginalignx_1^3&=bigg(-b+sqrt4acover2abigg)^3\&=(sqrt4ac-b)^2(sqrt4ac-b)over8a^3\&=(4ac-2bsqrt4ac+b^2)(sqrt4ac-b)over8a^3\&=4acsqrt4ac-4abc-8abc-2b^2sqrt4ac+b^2sqrt4ac-b^3over8a^3\&=4acsqrt4ac-12abc-b^2sqrt4ac-b^3over8a^3endalign$$



but from here I realized it's probably pointless to do this since I wouldn't be able to use it, and I'm out of ideas.










share|cite|improve this question





















  • Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
    – Manthanein
    45 mins ago














up vote
2
down vote

favorite













If $x_1$ and $x_2$ are the roots of
$$ax^2+bx+c=0$$
then $x_1^3$ and $x_2^3$ are the roots of which equation?




So I tried by solving this for $x_1/2$ so I could change it in $(x-x_1^3)(x-x_2^3)$



$x_1/2=large-bpmsqrt4acover2a$



and from here:



$$beginalignx_1^3&=bigg(-b+sqrt4acover2abigg)^3\&=(sqrt4ac-b)^2(sqrt4ac-b)over8a^3\&=(4ac-2bsqrt4ac+b^2)(sqrt4ac-b)over8a^3\&=4acsqrt4ac-4abc-8abc-2b^2sqrt4ac+b^2sqrt4ac-b^3over8a^3\&=4acsqrt4ac-12abc-b^2sqrt4ac-b^3over8a^3endalign$$



but from here I realized it's probably pointless to do this since I wouldn't be able to use it, and I'm out of ideas.










share|cite|improve this question





















  • Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
    – Manthanein
    45 mins ago












up vote
2
down vote

favorite









up vote
2
down vote

favorite












If $x_1$ and $x_2$ are the roots of
$$ax^2+bx+c=0$$
then $x_1^3$ and $x_2^3$ are the roots of which equation?




So I tried by solving this for $x_1/2$ so I could change it in $(x-x_1^3)(x-x_2^3)$



$x_1/2=large-bpmsqrt4acover2a$



and from here:



$$beginalignx_1^3&=bigg(-b+sqrt4acover2abigg)^3\&=(sqrt4ac-b)^2(sqrt4ac-b)over8a^3\&=(4ac-2bsqrt4ac+b^2)(sqrt4ac-b)over8a^3\&=4acsqrt4ac-4abc-8abc-2b^2sqrt4ac+b^2sqrt4ac-b^3over8a^3\&=4acsqrt4ac-12abc-b^2sqrt4ac-b^3over8a^3endalign$$



but from here I realized it's probably pointless to do this since I wouldn't be able to use it, and I'm out of ideas.










share|cite|improve this question














If $x_1$ and $x_2$ are the roots of
$$ax^2+bx+c=0$$
then $x_1^3$ and $x_2^3$ are the roots of which equation?




So I tried by solving this for $x_1/2$ so I could change it in $(x-x_1^3)(x-x_2^3)$



$x_1/2=large-bpmsqrt4acover2a$



and from here:



$$beginalignx_1^3&=bigg(-b+sqrt4acover2abigg)^3\&=(sqrt4ac-b)^2(sqrt4ac-b)over8a^3\&=(4ac-2bsqrt4ac+b^2)(sqrt4ac-b)over8a^3\&=4acsqrt4ac-4abc-8abc-2b^2sqrt4ac+b^2sqrt4ac-b^3over8a^3\&=4acsqrt4ac-12abc-b^2sqrt4ac-b^3over8a^3endalign$$



but from here I realized it's probably pointless to do this since I wouldn't be able to use it, and I'm out of ideas.







quadratics






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 48 mins ago









Aleksa

25912




25912











  • Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
    – Manthanein
    45 mins ago
















  • Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
    – Manthanein
    45 mins ago















Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
– Manthanein
45 mins ago




Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
– Manthanein
45 mins ago










2 Answers
2






active

oldest

votes

















up vote
4
down vote



accepted










HINT



We have



$$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$



$$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$



and



$$x_1^3x_2^3=(x_1x_2)^3$$



$$x_1^3+x_2^3=?$$






share|cite|improve this answer




















  • Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
    – Aleksa
    38 mins ago







  • 1




    @Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
    – gimusi
    34 mins ago










  • Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
    – Aleksa
    31 mins ago






  • 1




    @Aleksa Yes I obtain the same result!
    – gimusi
    26 mins ago

















up vote
3
down vote













Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.



The roots of the polynomial
$$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$






share|cite|improve this answer




















    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990095%2ffinding-a-quadratic-equation-using-roots%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    4
    down vote



    accepted










    HINT



    We have



    $$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$



    $$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$



    and



    $$x_1^3x_2^3=(x_1x_2)^3$$



    $$x_1^3+x_2^3=?$$






    share|cite|improve this answer




















    • Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
      – Aleksa
      38 mins ago







    • 1




      @Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
      – gimusi
      34 mins ago










    • Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
      – Aleksa
      31 mins ago






    • 1




      @Aleksa Yes I obtain the same result!
      – gimusi
      26 mins ago














    up vote
    4
    down vote



    accepted










    HINT



    We have



    $$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$



    $$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$



    and



    $$x_1^3x_2^3=(x_1x_2)^3$$



    $$x_1^3+x_2^3=?$$






    share|cite|improve this answer




















    • Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
      – Aleksa
      38 mins ago







    • 1




      @Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
      – gimusi
      34 mins ago










    • Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
      – Aleksa
      31 mins ago






    • 1




      @Aleksa Yes I obtain the same result!
      – gimusi
      26 mins ago












    up vote
    4
    down vote



    accepted







    up vote
    4
    down vote



    accepted






    HINT



    We have



    $$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$



    $$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$



    and



    $$x_1^3x_2^3=(x_1x_2)^3$$



    $$x_1^3+x_2^3=?$$






    share|cite|improve this answer












    HINT



    We have



    $$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$



    $$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$



    and



    $$x_1^3x_2^3=(x_1x_2)^3$$



    $$x_1^3+x_2^3=?$$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 46 mins ago









    gimusi

    82.6k74091




    82.6k74091











    • Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
      – Aleksa
      38 mins ago







    • 1




      @Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
      – gimusi
      34 mins ago










    • Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
      – Aleksa
      31 mins ago






    • 1




      @Aleksa Yes I obtain the same result!
      – gimusi
      26 mins ago
















    • Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
      – Aleksa
      38 mins ago







    • 1




      @Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
      – gimusi
      34 mins ago










    • Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
      – Aleksa
      31 mins ago






    • 1




      @Aleksa Yes I obtain the same result!
      – gimusi
      26 mins ago















    Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
    – Aleksa
    38 mins ago





    Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
    – Aleksa
    38 mins ago





    1




    1




    @Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
    – gimusi
    34 mins ago




    @Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
    – gimusi
    34 mins ago












    Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
    – Aleksa
    31 mins ago




    Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
    – Aleksa
    31 mins ago




    1




    1




    @Aleksa Yes I obtain the same result!
    – gimusi
    26 mins ago




    @Aleksa Yes I obtain the same result!
    – gimusi
    26 mins ago










    up vote
    3
    down vote













    Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.



    The roots of the polynomial
    $$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
    are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$






    share|cite|improve this answer
























      up vote
      3
      down vote













      Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.



      The roots of the polynomial
      $$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
      are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$






      share|cite|improve this answer






















        up vote
        3
        down vote










        up vote
        3
        down vote









        Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.



        The roots of the polynomial
        $$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
        are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$






        share|cite|improve this answer












        Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.



        The roots of the polynomial
        $$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
        are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 43 mins ago









        ajotatxe

        51.5k23286




        51.5k23286



























             

            draft saved


            draft discarded















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990095%2ffinding-a-quadratic-equation-using-roots%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            Long meetings (6-7 hours a day): Being “babysat” by supervisor

            Is the Concept of Multiple Fantasy Races Scientifically Flawed? [closed]

            Confectionery