Determine the value ..
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Taken from W.J Kaczor Books Problem in mathematical analysis page no ;28
determine the value
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3$$
My attempt :$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=sum_i=1^nfrac1n^3 sum_j=1^ij$
After that im not able to proceed further
pliz help me, Any hints/solution will be appreciated
thanks u
real-analysis algebra-precalculus limits
add a comment |Â
up vote
2
down vote
favorite
Taken from W.J Kaczor Books Problem in mathematical analysis page no ;28
determine the value
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3$$
My attempt :$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=sum_i=1^nfrac1n^3 sum_j=1^ij$
After that im not able to proceed further
pliz help me, Any hints/solution will be appreciated
thanks u
real-analysis algebra-precalculus limits
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Taken from W.J Kaczor Books Problem in mathematical analysis page no ;28
determine the value
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3$$
My attempt :$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=sum_i=1^nfrac1n^3 sum_j=1^ij$
After that im not able to proceed further
pliz help me, Any hints/solution will be appreciated
thanks u
real-analysis algebra-precalculus limits
Taken from W.J Kaczor Books Problem in mathematical analysis page no ;28
determine the value
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3$$
My attempt :$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=sum_i=1^nfrac1n^3 sum_j=1^ij$
After that im not able to proceed further
pliz help me, Any hints/solution will be appreciated
thanks u
real-analysis algebra-precalculus limits
real-analysis algebra-precalculus limits
edited 1 hour ago


Servaes
19.3k33686
19.3k33686
asked 1 hour ago
jasmine
1,127213
1,127213
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
Assuming is a positive integer, the well known formulas
$$sum_k=1^mk=fracm(m+1)2
qquadtext and qquad
sum_k=1^mk^2=fracm(m+1)(2m+1)6,$$
yield with some basic algebra
begineqnarray*
sum_i=1^nsum_j=1^i fracjn^3
&=&sum_i=1^nfrac1n^3sum_j=1^ij=frac1n^3sum_i=1^nfraci(i+1)2\
&=½n^3sum_i=1^ni+frac12n^3sum_i=1^ni^2\
&=½n^3fracn(n+1)2+frac12n^3fracn(n+1)(2n+1)6\
&=&frac2n^3+6n^2+3n12n^3=frac16+frac12n+frac13n^2.
endeqnarray*
Hence the limit is
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=lim_ntoinftyleft(frac16+frac12n+frac13n^2right)=frac16.$$
thanks a lots @servaes
– jasmine
1 hour ago
add a comment |Â
up vote
2
down vote
Use the formula for $sum_j=1^i j$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Assuming is a positive integer, the well known formulas
$$sum_k=1^mk=fracm(m+1)2
qquadtext and qquad
sum_k=1^mk^2=fracm(m+1)(2m+1)6,$$
yield with some basic algebra
begineqnarray*
sum_i=1^nsum_j=1^i fracjn^3
&=&sum_i=1^nfrac1n^3sum_j=1^ij=frac1n^3sum_i=1^nfraci(i+1)2\
&=½n^3sum_i=1^ni+frac12n^3sum_i=1^ni^2\
&=½n^3fracn(n+1)2+frac12n^3fracn(n+1)(2n+1)6\
&=&frac2n^3+6n^2+3n12n^3=frac16+frac12n+frac13n^2.
endeqnarray*
Hence the limit is
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=lim_ntoinftyleft(frac16+frac12n+frac13n^2right)=frac16.$$
thanks a lots @servaes
– jasmine
1 hour ago
add a comment |Â
up vote
2
down vote
accepted
Assuming is a positive integer, the well known formulas
$$sum_k=1^mk=fracm(m+1)2
qquadtext and qquad
sum_k=1^mk^2=fracm(m+1)(2m+1)6,$$
yield with some basic algebra
begineqnarray*
sum_i=1^nsum_j=1^i fracjn^3
&=&sum_i=1^nfrac1n^3sum_j=1^ij=frac1n^3sum_i=1^nfraci(i+1)2\
&=½n^3sum_i=1^ni+frac12n^3sum_i=1^ni^2\
&=½n^3fracn(n+1)2+frac12n^3fracn(n+1)(2n+1)6\
&=&frac2n^3+6n^2+3n12n^3=frac16+frac12n+frac13n^2.
endeqnarray*
Hence the limit is
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=lim_ntoinftyleft(frac16+frac12n+frac13n^2right)=frac16.$$
thanks a lots @servaes
– jasmine
1 hour ago
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Assuming is a positive integer, the well known formulas
$$sum_k=1^mk=fracm(m+1)2
qquadtext and qquad
sum_k=1^mk^2=fracm(m+1)(2m+1)6,$$
yield with some basic algebra
begineqnarray*
sum_i=1^nsum_j=1^i fracjn^3
&=&sum_i=1^nfrac1n^3sum_j=1^ij=frac1n^3sum_i=1^nfraci(i+1)2\
&=½n^3sum_i=1^ni+frac12n^3sum_i=1^ni^2\
&=½n^3fracn(n+1)2+frac12n^3fracn(n+1)(2n+1)6\
&=&frac2n^3+6n^2+3n12n^3=frac16+frac12n+frac13n^2.
endeqnarray*
Hence the limit is
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=lim_ntoinftyleft(frac16+frac12n+frac13n^2right)=frac16.$$
Assuming is a positive integer, the well known formulas
$$sum_k=1^mk=fracm(m+1)2
qquadtext and qquad
sum_k=1^mk^2=fracm(m+1)(2m+1)6,$$
yield with some basic algebra
begineqnarray*
sum_i=1^nsum_j=1^i fracjn^3
&=&sum_i=1^nfrac1n^3sum_j=1^ij=frac1n^3sum_i=1^nfraci(i+1)2\
&=½n^3sum_i=1^ni+frac12n^3sum_i=1^ni^2\
&=½n^3fracn(n+1)2+frac12n^3fracn(n+1)(2n+1)6\
&=&frac2n^3+6n^2+3n12n^3=frac16+frac12n+frac13n^2.
endeqnarray*
Hence the limit is
$$lim_n rightarrow infty sum_i=1^nsum_j=1^i fracjn^3=lim_ntoinftyleft(frac16+frac12n+frac13n^2right)=frac16.$$
edited 1 hour ago
answered 1 hour ago


Servaes
19.3k33686
19.3k33686
thanks a lots @servaes
– jasmine
1 hour ago
add a comment |Â
thanks a lots @servaes
– jasmine
1 hour ago
thanks a lots @servaes
– jasmine
1 hour ago
thanks a lots @servaes
– jasmine
1 hour ago
add a comment |Â
up vote
2
down vote
Use the formula for $sum_j=1^i j$.
add a comment |Â
up vote
2
down vote
Use the formula for $sum_j=1^i j$.
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Use the formula for $sum_j=1^i j$.
Use the formula for $sum_j=1^i j$.
answered 1 hour ago
Stockfish
30615
30615
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2970254%2fdetermine-the-value%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password