List of critical points
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
In TI-Nspire CX CAS, writing:
exp▶list(fMax(sin(x),x,0,10),x)
I get:
((À)/(2)),((5*À)/(2))
while in Wolfram Mathematica, writing:
Maximize[Sin[x], 0 <= x <= 10, x]
I get:
1, x -> À/2
Is there a way to get the result above?
calculus-and-analysis maximum
add a comment |Â
up vote
4
down vote
favorite
In TI-Nspire CX CAS, writing:
exp▶list(fMax(sin(x),x,0,10),x)
I get:
((À)/(2)),((5*À)/(2))
while in Wolfram Mathematica, writing:
Maximize[Sin[x], 0 <= x <= 10, x]
I get:
1, x -> À/2
Is there a way to get the result above?
calculus-and-analysis maximum
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
In TI-Nspire CX CAS, writing:
exp▶list(fMax(sin(x),x,0,10),x)
I get:
((À)/(2)),((5*À)/(2))
while in Wolfram Mathematica, writing:
Maximize[Sin[x], 0 <= x <= 10, x]
I get:
1, x -> À/2
Is there a way to get the result above?
calculus-and-analysis maximum
In TI-Nspire CX CAS, writing:
exp▶list(fMax(sin(x),x,0,10),x)
I get:
((À)/(2)),((5*À)/(2))
while in Wolfram Mathematica, writing:
Maximize[Sin[x], 0 <= x <= 10, x]
I get:
1, x -> À/2
Is there a way to get the result above?
calculus-and-analysis maximum
edited Aug 18 at 8:16


Carl Woll
55.6k271144
55.6k271144
asked Aug 18 at 7:46
TeM
1,648618
1,648618
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x == À/2 || x == (5 À)/2
List @@ %
x == À/2, x == (5 À)/2
Alternatively,
Solve[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x -> À/2, x -> (5 À)/2
x /. %
À/2, (5 À)/2
or
x /. ToRules[Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]]
À/2, (5 À)/2
add a comment |Â
up vote
6
down vote
I would use MaxValue
in combination with Solve
:
maxima[expr_, cond_, v_] := With[m = MaxValue[expr, cond, v],
DeleteDuplicates @ Solve[expr == m && cond, v]
]
For your example:
maxima[Sin[x], 0<=x<=10, x]
x -> À/2, x -> (5 À)/2
Contrast this with the approach in kglr's answer that only looks at critical points:
maxima[Sin[x], -1 <= x <= 1, x]
Reduce[Sin'[x]==0,Sin''[x]<=0,-1<=x<=1,x,Reals]
x -> 1
False
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x == À/2 || x == (5 À)/2
List @@ %
x == À/2, x == (5 À)/2
Alternatively,
Solve[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x -> À/2, x -> (5 À)/2
x /. %
À/2, (5 À)/2
or
x /. ToRules[Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]]
À/2, (5 À)/2
add a comment |Â
up vote
4
down vote
accepted
Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x == À/2 || x == (5 À)/2
List @@ %
x == À/2, x == (5 À)/2
Alternatively,
Solve[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x -> À/2, x -> (5 À)/2
x /. %
À/2, (5 À)/2
or
x /. ToRules[Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]]
À/2, (5 À)/2
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x == À/2 || x == (5 À)/2
List @@ %
x == À/2, x == (5 À)/2
Alternatively,
Solve[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x -> À/2, x -> (5 À)/2
x /. %
À/2, (5 À)/2
or
x /. ToRules[Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]]
À/2, (5 À)/2
Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x == À/2 || x == (5 À)/2
List @@ %
x == À/2, x == (5 À)/2
Alternatively,
Solve[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]
x -> À/2, x -> (5 À)/2
x /. %
À/2, (5 À)/2
or
x /. ToRules[Reduce[Sin'[x] == 0, Sin''[x] <= 0, 0 <= x <= 10, x, Reals]]
À/2, (5 À)/2
edited Aug 18 at 8:05
answered Aug 18 at 7:59
kglr
158k8182380
158k8182380
add a comment |Â
add a comment |Â
up vote
6
down vote
I would use MaxValue
in combination with Solve
:
maxima[expr_, cond_, v_] := With[m = MaxValue[expr, cond, v],
DeleteDuplicates @ Solve[expr == m && cond, v]
]
For your example:
maxima[Sin[x], 0<=x<=10, x]
x -> À/2, x -> (5 À)/2
Contrast this with the approach in kglr's answer that only looks at critical points:
maxima[Sin[x], -1 <= x <= 1, x]
Reduce[Sin'[x]==0,Sin''[x]<=0,-1<=x<=1,x,Reals]
x -> 1
False
add a comment |Â
up vote
6
down vote
I would use MaxValue
in combination with Solve
:
maxima[expr_, cond_, v_] := With[m = MaxValue[expr, cond, v],
DeleteDuplicates @ Solve[expr == m && cond, v]
]
For your example:
maxima[Sin[x], 0<=x<=10, x]
x -> À/2, x -> (5 À)/2
Contrast this with the approach in kglr's answer that only looks at critical points:
maxima[Sin[x], -1 <= x <= 1, x]
Reduce[Sin'[x]==0,Sin''[x]<=0,-1<=x<=1,x,Reals]
x -> 1
False
add a comment |Â
up vote
6
down vote
up vote
6
down vote
I would use MaxValue
in combination with Solve
:
maxima[expr_, cond_, v_] := With[m = MaxValue[expr, cond, v],
DeleteDuplicates @ Solve[expr == m && cond, v]
]
For your example:
maxima[Sin[x], 0<=x<=10, x]
x -> À/2, x -> (5 À)/2
Contrast this with the approach in kglr's answer that only looks at critical points:
maxima[Sin[x], -1 <= x <= 1, x]
Reduce[Sin'[x]==0,Sin''[x]<=0,-1<=x<=1,x,Reals]
x -> 1
False
I would use MaxValue
in combination with Solve
:
maxima[expr_, cond_, v_] := With[m = MaxValue[expr, cond, v],
DeleteDuplicates @ Solve[expr == m && cond, v]
]
For your example:
maxima[Sin[x], 0<=x<=10, x]
x -> À/2, x -> (5 À)/2
Contrast this with the approach in kglr's answer that only looks at critical points:
maxima[Sin[x], -1 <= x <= 1, x]
Reduce[Sin'[x]==0,Sin''[x]<=0,-1<=x<=1,x,Reals]
x -> 1
False
answered Aug 18 at 8:15


Carl Woll
55.6k271144
55.6k271144
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f180204%2flist-of-critical-points%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password