What is $limlimits_n rightarrow infty fracsqrtn+1 + 3sqrtn+2 - 4$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$$beginequation*
lim_n rightarrow infty
fracsqrtn+1 + 3sqrtn+2 - 4
endequation*$$



I know that I should multiply by the conjugate if I have square roots in either the numerator or the denominator but what if I have square roots in both numerator and denominator?



Could anyone help me please?







share|cite|improve this question


















  • 1




    Both the numerator and the denominator are $sqrtn+O(1)$, so...
    – Jack D'Aurizio♦
    Sep 1 at 23:33














up vote
0
down vote

favorite












$$beginequation*
lim_n rightarrow infty
fracsqrtn+1 + 3sqrtn+2 - 4
endequation*$$



I know that I should multiply by the conjugate if I have square roots in either the numerator or the denominator but what if I have square roots in both numerator and denominator?



Could anyone help me please?







share|cite|improve this question


















  • 1




    Both the numerator and the denominator are $sqrtn+O(1)$, so...
    – Jack D'Aurizio♦
    Sep 1 at 23:33












up vote
0
down vote

favorite









up vote
0
down vote

favorite











$$beginequation*
lim_n rightarrow infty
fracsqrtn+1 + 3sqrtn+2 - 4
endequation*$$



I know that I should multiply by the conjugate if I have square roots in either the numerator or the denominator but what if I have square roots in both numerator and denominator?



Could anyone help me please?







share|cite|improve this question














$$beginequation*
lim_n rightarrow infty
fracsqrtn+1 + 3sqrtn+2 - 4
endequation*$$



I know that I should multiply by the conjugate if I have square roots in either the numerator or the denominator but what if I have square roots in both numerator and denominator?



Could anyone help me please?









share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Sep 2 at 3:39









Robson

47320




47320










asked Sep 1 at 22:26







user426277














  • 1




    Both the numerator and the denominator are $sqrtn+O(1)$, so...
    – Jack D'Aurizio♦
    Sep 1 at 23:33












  • 1




    Both the numerator and the denominator are $sqrtn+O(1)$, so...
    – Jack D'Aurizio♦
    Sep 1 at 23:33







1




1




Both the numerator and the denominator are $sqrtn+O(1)$, so...
– Jack D'Aurizio♦
Sep 1 at 23:33




Both the numerator and the denominator are $sqrtn+O(1)$, so...
– Jack D'Aurizio♦
Sep 1 at 23:33










5 Answers
5






active

oldest

votes

















up vote
5
down vote



accepted










HINT



By intuition we have that the $sqrt n$ terms are dominant on the others and therefore in the limit



$$fracsqrt(n+1)+ 3sqrt(n+2) - 4sim fracsqrt nsqrt n=1$$



To check and formalize rigoursly this fact let consider



$$fracsqrt(n+1)+ 3sqrt(n+2) - 4=fracsqrt nsqrt nfracsqrt(1+1/n)+ 3/sqrt nsqrt(1+2/n) - 4/sqrt n$$



then take the limit.






share|cite|improve this answer





























    up vote
    2
    down vote













    Using equivalents, it's very simple:



    $sqrtn+1+3,:sqrtn+2-4sim_inftysqrt n$, so
    $$fracsqrtn+1+3sqrtn+2-4sim_inftyfracsqrt nsqrt n=1.$$






    share|cite|improve this answer



























      up vote
      2
      down vote













      Just if you want to know more than the limit itself.
      $$sqrtn+a=sqrt n sqrt1+frac an$$ Now, use the binomial expansion or Taylor series to get
      $$sqrt1+frac an=1+fraca2 n-fraca^28 n^2+Oleft(frac1n^3right)$$
      $$fracsqrtn+1 + 3sqrtn+2 - 4=fracsqrt nleft(1+frac12 n-frac18 n^2+Oleft(frac1n^3right) right)+3 sqrt nleft(1+frac1n-frac12 n^2 +Oleft(frac1n^3right)right)-4 =frac sqrt n +3 +frac1 2 sqrt n-frac1 8 n^3/2+Oleft(frac1n^5/2right) sqrt n -4 +frac1 sqrt n-frac1 2 n^3/2+Oleft(frac1n^5/2right) $$ Now, long division to get
      $$fracsqrtn+1 + 3sqrtn+2 - 4=1+frac 7 sqrt n+frac 552n+Oleft(frac1n^3/2right)$$






      share|cite|improve this answer




















      • That's a nice limit radiography!
        – gimusi
        Sep 2 at 7:20

















      up vote
      1
      down vote













      General rules:



      (1). If $lim_nto inftyA_n=A$ and $lim_nto inftyB_n=B$ then



      (1a). $lim_nto infty(A_n+B_n)=A+B.$



      (1b). If $Bne 0$ then $lim_nto infty (A_n/B_n)=A/B.$



      (2). If $lim_nto inftyA_n=Ageq 0$ then $lim_nto infty sqrtA_n=sqrt A.$



      We have $lim_nto inftyfrac sqrt n+1+3sqrt n+2-4=$ $lim_nto inftyfrac sqrt 1+1/n;+(3/sqrt n)sqrt 1+2/n ;-(4/sqrt n).$



      We have $1=lim_nto infty(1+1/n)=lim_nto infty(1+2/n).$ We have $0=lim_nto infty(3/sqrt n)=lim_nto infty(-4/sqrt n).$



      Applying the rules above , we obtain a limit of $1$ for both the numerator and denominator of the given expression, and therefore a limit of $1$ for the whole thing.






      share|cite|improve this answer



























        up vote
        1
        down vote













        Based on the estimate:
        $$colorbluefracsqrtn+1+3sqrtn+2<fracsqrtn+1+3sqrtn+2-4<colorredfracsqrtn+2+3sqrtn+2-4, n>14 iff \
        lim_ntoinftycolorbluefracsqrtn+1+3sqrtn+2=lim_ntoinftysqrt1-frac1n+2+lim_ntoinftyfrac3sqrtn+2=1+0=1;\
        lim_ntoinftycolorredfracsqrtn+2+3sqrtn+2-4=lim_ntoinftyleft(1+frac7sqrtn+2-4right)=1.$$
        By the Squeeze Theorem the limit is $1$.






        share|cite|improve this answer




















          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902159%2fwhat-is-lim-limits-n-rightarrow-infty-frac-sqrtn1-3-sqrtn2-4%23new-answer', 'question_page');

          );

          Post as a guest





























          5 Answers
          5






          active

          oldest

          votes








          5 Answers
          5






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          5
          down vote



          accepted










          HINT



          By intuition we have that the $sqrt n$ terms are dominant on the others and therefore in the limit



          $$fracsqrt(n+1)+ 3sqrt(n+2) - 4sim fracsqrt nsqrt n=1$$



          To check and formalize rigoursly this fact let consider



          $$fracsqrt(n+1)+ 3sqrt(n+2) - 4=fracsqrt nsqrt nfracsqrt(1+1/n)+ 3/sqrt nsqrt(1+2/n) - 4/sqrt n$$



          then take the limit.






          share|cite|improve this answer


























            up vote
            5
            down vote



            accepted










            HINT



            By intuition we have that the $sqrt n$ terms are dominant on the others and therefore in the limit



            $$fracsqrt(n+1)+ 3sqrt(n+2) - 4sim fracsqrt nsqrt n=1$$



            To check and formalize rigoursly this fact let consider



            $$fracsqrt(n+1)+ 3sqrt(n+2) - 4=fracsqrt nsqrt nfracsqrt(1+1/n)+ 3/sqrt nsqrt(1+2/n) - 4/sqrt n$$



            then take the limit.






            share|cite|improve this answer
























              up vote
              5
              down vote



              accepted







              up vote
              5
              down vote



              accepted






              HINT



              By intuition we have that the $sqrt n$ terms are dominant on the others and therefore in the limit



              $$fracsqrt(n+1)+ 3sqrt(n+2) - 4sim fracsqrt nsqrt n=1$$



              To check and formalize rigoursly this fact let consider



              $$fracsqrt(n+1)+ 3sqrt(n+2) - 4=fracsqrt nsqrt nfracsqrt(1+1/n)+ 3/sqrt nsqrt(1+2/n) - 4/sqrt n$$



              then take the limit.






              share|cite|improve this answer














              HINT



              By intuition we have that the $sqrt n$ terms are dominant on the others and therefore in the limit



              $$fracsqrt(n+1)+ 3sqrt(n+2) - 4sim fracsqrt nsqrt n=1$$



              To check and formalize rigoursly this fact let consider



              $$fracsqrt(n+1)+ 3sqrt(n+2) - 4=fracsqrt nsqrt nfracsqrt(1+1/n)+ 3/sqrt nsqrt(1+2/n) - 4/sqrt n$$



              then take the limit.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Sep 1 at 22:35

























              answered Sep 1 at 22:29









              gimusi

              70.9k73786




              70.9k73786




















                  up vote
                  2
                  down vote













                  Using equivalents, it's very simple:



                  $sqrtn+1+3,:sqrtn+2-4sim_inftysqrt n$, so
                  $$fracsqrtn+1+3sqrtn+2-4sim_inftyfracsqrt nsqrt n=1.$$






                  share|cite|improve this answer
























                    up vote
                    2
                    down vote













                    Using equivalents, it's very simple:



                    $sqrtn+1+3,:sqrtn+2-4sim_inftysqrt n$, so
                    $$fracsqrtn+1+3sqrtn+2-4sim_inftyfracsqrt nsqrt n=1.$$






                    share|cite|improve this answer






















                      up vote
                      2
                      down vote










                      up vote
                      2
                      down vote









                      Using equivalents, it's very simple:



                      $sqrtn+1+3,:sqrtn+2-4sim_inftysqrt n$, so
                      $$fracsqrtn+1+3sqrtn+2-4sim_inftyfracsqrt nsqrt n=1.$$






                      share|cite|improve this answer












                      Using equivalents, it's very simple:



                      $sqrtn+1+3,:sqrtn+2-4sim_inftysqrt n$, so
                      $$fracsqrtn+1+3sqrtn+2-4sim_inftyfracsqrt nsqrt n=1.$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Sep 1 at 22:33









                      Bernard

                      111k635102




                      111k635102




















                          up vote
                          2
                          down vote













                          Just if you want to know more than the limit itself.
                          $$sqrtn+a=sqrt n sqrt1+frac an$$ Now, use the binomial expansion or Taylor series to get
                          $$sqrt1+frac an=1+fraca2 n-fraca^28 n^2+Oleft(frac1n^3right)$$
                          $$fracsqrtn+1 + 3sqrtn+2 - 4=fracsqrt nleft(1+frac12 n-frac18 n^2+Oleft(frac1n^3right) right)+3 sqrt nleft(1+frac1n-frac12 n^2 +Oleft(frac1n^3right)right)-4 =frac sqrt n +3 +frac1 2 sqrt n-frac1 8 n^3/2+Oleft(frac1n^5/2right) sqrt n -4 +frac1 sqrt n-frac1 2 n^3/2+Oleft(frac1n^5/2right) $$ Now, long division to get
                          $$fracsqrtn+1 + 3sqrtn+2 - 4=1+frac 7 sqrt n+frac 552n+Oleft(frac1n^3/2right)$$






                          share|cite|improve this answer




















                          • That's a nice limit radiography!
                            – gimusi
                            Sep 2 at 7:20














                          up vote
                          2
                          down vote













                          Just if you want to know more than the limit itself.
                          $$sqrtn+a=sqrt n sqrt1+frac an$$ Now, use the binomial expansion or Taylor series to get
                          $$sqrt1+frac an=1+fraca2 n-fraca^28 n^2+Oleft(frac1n^3right)$$
                          $$fracsqrtn+1 + 3sqrtn+2 - 4=fracsqrt nleft(1+frac12 n-frac18 n^2+Oleft(frac1n^3right) right)+3 sqrt nleft(1+frac1n-frac12 n^2 +Oleft(frac1n^3right)right)-4 =frac sqrt n +3 +frac1 2 sqrt n-frac1 8 n^3/2+Oleft(frac1n^5/2right) sqrt n -4 +frac1 sqrt n-frac1 2 n^3/2+Oleft(frac1n^5/2right) $$ Now, long division to get
                          $$fracsqrtn+1 + 3sqrtn+2 - 4=1+frac 7 sqrt n+frac 552n+Oleft(frac1n^3/2right)$$






                          share|cite|improve this answer




















                          • That's a nice limit radiography!
                            – gimusi
                            Sep 2 at 7:20












                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          Just if you want to know more than the limit itself.
                          $$sqrtn+a=sqrt n sqrt1+frac an$$ Now, use the binomial expansion or Taylor series to get
                          $$sqrt1+frac an=1+fraca2 n-fraca^28 n^2+Oleft(frac1n^3right)$$
                          $$fracsqrtn+1 + 3sqrtn+2 - 4=fracsqrt nleft(1+frac12 n-frac18 n^2+Oleft(frac1n^3right) right)+3 sqrt nleft(1+frac1n-frac12 n^2 +Oleft(frac1n^3right)right)-4 =frac sqrt n +3 +frac1 2 sqrt n-frac1 8 n^3/2+Oleft(frac1n^5/2right) sqrt n -4 +frac1 sqrt n-frac1 2 n^3/2+Oleft(frac1n^5/2right) $$ Now, long division to get
                          $$fracsqrtn+1 + 3sqrtn+2 - 4=1+frac 7 sqrt n+frac 552n+Oleft(frac1n^3/2right)$$






                          share|cite|improve this answer












                          Just if you want to know more than the limit itself.
                          $$sqrtn+a=sqrt n sqrt1+frac an$$ Now, use the binomial expansion or Taylor series to get
                          $$sqrt1+frac an=1+fraca2 n-fraca^28 n^2+Oleft(frac1n^3right)$$
                          $$fracsqrtn+1 + 3sqrtn+2 - 4=fracsqrt nleft(1+frac12 n-frac18 n^2+Oleft(frac1n^3right) right)+3 sqrt nleft(1+frac1n-frac12 n^2 +Oleft(frac1n^3right)right)-4 =frac sqrt n +3 +frac1 2 sqrt n-frac1 8 n^3/2+Oleft(frac1n^5/2right) sqrt n -4 +frac1 sqrt n-frac1 2 n^3/2+Oleft(frac1n^5/2right) $$ Now, long division to get
                          $$fracsqrtn+1 + 3sqrtn+2 - 4=1+frac 7 sqrt n+frac 552n+Oleft(frac1n^3/2right)$$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Sep 2 at 5:01









                          Claude Leibovici

                          113k1155127




                          113k1155127











                          • That's a nice limit radiography!
                            – gimusi
                            Sep 2 at 7:20
















                          • That's a nice limit radiography!
                            – gimusi
                            Sep 2 at 7:20















                          That's a nice limit radiography!
                          – gimusi
                          Sep 2 at 7:20




                          That's a nice limit radiography!
                          – gimusi
                          Sep 2 at 7:20










                          up vote
                          1
                          down vote













                          General rules:



                          (1). If $lim_nto inftyA_n=A$ and $lim_nto inftyB_n=B$ then



                          (1a). $lim_nto infty(A_n+B_n)=A+B.$



                          (1b). If $Bne 0$ then $lim_nto infty (A_n/B_n)=A/B.$



                          (2). If $lim_nto inftyA_n=Ageq 0$ then $lim_nto infty sqrtA_n=sqrt A.$



                          We have $lim_nto inftyfrac sqrt n+1+3sqrt n+2-4=$ $lim_nto inftyfrac sqrt 1+1/n;+(3/sqrt n)sqrt 1+2/n ;-(4/sqrt n).$



                          We have $1=lim_nto infty(1+1/n)=lim_nto infty(1+2/n).$ We have $0=lim_nto infty(3/sqrt n)=lim_nto infty(-4/sqrt n).$



                          Applying the rules above , we obtain a limit of $1$ for both the numerator and denominator of the given expression, and therefore a limit of $1$ for the whole thing.






                          share|cite|improve this answer
























                            up vote
                            1
                            down vote













                            General rules:



                            (1). If $lim_nto inftyA_n=A$ and $lim_nto inftyB_n=B$ then



                            (1a). $lim_nto infty(A_n+B_n)=A+B.$



                            (1b). If $Bne 0$ then $lim_nto infty (A_n/B_n)=A/B.$



                            (2). If $lim_nto inftyA_n=Ageq 0$ then $lim_nto infty sqrtA_n=sqrt A.$



                            We have $lim_nto inftyfrac sqrt n+1+3sqrt n+2-4=$ $lim_nto inftyfrac sqrt 1+1/n;+(3/sqrt n)sqrt 1+2/n ;-(4/sqrt n).$



                            We have $1=lim_nto infty(1+1/n)=lim_nto infty(1+2/n).$ We have $0=lim_nto infty(3/sqrt n)=lim_nto infty(-4/sqrt n).$



                            Applying the rules above , we obtain a limit of $1$ for both the numerator and denominator of the given expression, and therefore a limit of $1$ for the whole thing.






                            share|cite|improve this answer






















                              up vote
                              1
                              down vote










                              up vote
                              1
                              down vote









                              General rules:



                              (1). If $lim_nto inftyA_n=A$ and $lim_nto inftyB_n=B$ then



                              (1a). $lim_nto infty(A_n+B_n)=A+B.$



                              (1b). If $Bne 0$ then $lim_nto infty (A_n/B_n)=A/B.$



                              (2). If $lim_nto inftyA_n=Ageq 0$ then $lim_nto infty sqrtA_n=sqrt A.$



                              We have $lim_nto inftyfrac sqrt n+1+3sqrt n+2-4=$ $lim_nto inftyfrac sqrt 1+1/n;+(3/sqrt n)sqrt 1+2/n ;-(4/sqrt n).$



                              We have $1=lim_nto infty(1+1/n)=lim_nto infty(1+2/n).$ We have $0=lim_nto infty(3/sqrt n)=lim_nto infty(-4/sqrt n).$



                              Applying the rules above , we obtain a limit of $1$ for both the numerator and denominator of the given expression, and therefore a limit of $1$ for the whole thing.






                              share|cite|improve this answer












                              General rules:



                              (1). If $lim_nto inftyA_n=A$ and $lim_nto inftyB_n=B$ then



                              (1a). $lim_nto infty(A_n+B_n)=A+B.$



                              (1b). If $Bne 0$ then $lim_nto infty (A_n/B_n)=A/B.$



                              (2). If $lim_nto inftyA_n=Ageq 0$ then $lim_nto infty sqrtA_n=sqrt A.$



                              We have $lim_nto inftyfrac sqrt n+1+3sqrt n+2-4=$ $lim_nto inftyfrac sqrt 1+1/n;+(3/sqrt n)sqrt 1+2/n ;-(4/sqrt n).$



                              We have $1=lim_nto infty(1+1/n)=lim_nto infty(1+2/n).$ We have $0=lim_nto infty(3/sqrt n)=lim_nto infty(-4/sqrt n).$



                              Applying the rules above , we obtain a limit of $1$ for both the numerator and denominator of the given expression, and therefore a limit of $1$ for the whole thing.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Sep 2 at 7:37









                              DanielWainfleet

                              32.1k31644




                              32.1k31644




















                                  up vote
                                  1
                                  down vote













                                  Based on the estimate:
                                  $$colorbluefracsqrtn+1+3sqrtn+2<fracsqrtn+1+3sqrtn+2-4<colorredfracsqrtn+2+3sqrtn+2-4, n>14 iff \
                                  lim_ntoinftycolorbluefracsqrtn+1+3sqrtn+2=lim_ntoinftysqrt1-frac1n+2+lim_ntoinftyfrac3sqrtn+2=1+0=1;\
                                  lim_ntoinftycolorredfracsqrtn+2+3sqrtn+2-4=lim_ntoinftyleft(1+frac7sqrtn+2-4right)=1.$$
                                  By the Squeeze Theorem the limit is $1$.






                                  share|cite|improve this answer
























                                    up vote
                                    1
                                    down vote













                                    Based on the estimate:
                                    $$colorbluefracsqrtn+1+3sqrtn+2<fracsqrtn+1+3sqrtn+2-4<colorredfracsqrtn+2+3sqrtn+2-4, n>14 iff \
                                    lim_ntoinftycolorbluefracsqrtn+1+3sqrtn+2=lim_ntoinftysqrt1-frac1n+2+lim_ntoinftyfrac3sqrtn+2=1+0=1;\
                                    lim_ntoinftycolorredfracsqrtn+2+3sqrtn+2-4=lim_ntoinftyleft(1+frac7sqrtn+2-4right)=1.$$
                                    By the Squeeze Theorem the limit is $1$.






                                    share|cite|improve this answer






















                                      up vote
                                      1
                                      down vote










                                      up vote
                                      1
                                      down vote









                                      Based on the estimate:
                                      $$colorbluefracsqrtn+1+3sqrtn+2<fracsqrtn+1+3sqrtn+2-4<colorredfracsqrtn+2+3sqrtn+2-4, n>14 iff \
                                      lim_ntoinftycolorbluefracsqrtn+1+3sqrtn+2=lim_ntoinftysqrt1-frac1n+2+lim_ntoinftyfrac3sqrtn+2=1+0=1;\
                                      lim_ntoinftycolorredfracsqrtn+2+3sqrtn+2-4=lim_ntoinftyleft(1+frac7sqrtn+2-4right)=1.$$
                                      By the Squeeze Theorem the limit is $1$.






                                      share|cite|improve this answer












                                      Based on the estimate:
                                      $$colorbluefracsqrtn+1+3sqrtn+2<fracsqrtn+1+3sqrtn+2-4<colorredfracsqrtn+2+3sqrtn+2-4, n>14 iff \
                                      lim_ntoinftycolorbluefracsqrtn+1+3sqrtn+2=lim_ntoinftysqrt1-frac1n+2+lim_ntoinftyfrac3sqrtn+2=1+0=1;\
                                      lim_ntoinftycolorredfracsqrtn+2+3sqrtn+2-4=lim_ntoinftyleft(1+frac7sqrtn+2-4right)=1.$$
                                      By the Squeeze Theorem the limit is $1$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Sep 2 at 9:12









                                      farruhota

                                      15k2734




                                      15k2734



























                                           

                                          draft saved


                                          draft discarded















































                                           


                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2902159%2fwhat-is-lim-limits-n-rightarrow-infty-frac-sqrtn1-3-sqrtn2-4%23new-answer', 'question_page');

                                          );

                                          Post as a guest













































































                                          Comments

                                          Popular posts from this blog

                                          What does second last employer means? [closed]

                                          List of Gilmore Girls characters

                                          Confectionery