Inversion of rotation matrix
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
For example, I have a two-dimensional rotation matrix
$$
beginbmatrix
0.5091 & -0.8607 \
0.8607 & phantom-0.5091
endbmatrix
$$
and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.
My problem is to find an inverse of the rotation matrix so that I can later “undo†the rotation performed on the vector so that I get back the original vector.
The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.
matrices rotations
add a comment |Â
up vote
3
down vote
favorite
For example, I have a two-dimensional rotation matrix
$$
beginbmatrix
0.5091 & -0.8607 \
0.8607 & phantom-0.5091
endbmatrix
$$
and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.
My problem is to find an inverse of the rotation matrix so that I can later “undo†the rotation performed on the vector so that I get back the original vector.
The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.
matrices rotations
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
For example, I have a two-dimensional rotation matrix
$$
beginbmatrix
0.5091 & -0.8607 \
0.8607 & phantom-0.5091
endbmatrix
$$
and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.
My problem is to find an inverse of the rotation matrix so that I can later “undo†the rotation performed on the vector so that I get back the original vector.
The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.
matrices rotations
For example, I have a two-dimensional rotation matrix
$$
beginbmatrix
0.5091 & -0.8607 \
0.8607 & phantom-0.5091
endbmatrix
$$
and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.
My problem is to find an inverse of the rotation matrix so that I can later “undo†the rotation performed on the vector so that I get back the original vector.
The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.
matrices rotations
edited Aug 27 at 10:34


Jendrik Stelzner
7,63121037
7,63121037
asked Aug 27 at 6:13
aleksv
396
396
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
5
down vote
accepted
Recall that rotation matrices are orthogonal therefore
$$A^-1=A^T$$
indeed note that
$$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
=beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$
Perfect, thanks!
– aleksv
Aug 27 at 6:35
1
@aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
– gimusi
Aug 27 at 6:36
add a comment |Â
up vote
1
down vote
That's easy:
$$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
=beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
accepted
Recall that rotation matrices are orthogonal therefore
$$A^-1=A^T$$
indeed note that
$$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
=beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$
Perfect, thanks!
– aleksv
Aug 27 at 6:35
1
@aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
– gimusi
Aug 27 at 6:36
add a comment |Â
up vote
5
down vote
accepted
Recall that rotation matrices are orthogonal therefore
$$A^-1=A^T$$
indeed note that
$$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
=beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$
Perfect, thanks!
– aleksv
Aug 27 at 6:35
1
@aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
– gimusi
Aug 27 at 6:36
add a comment |Â
up vote
5
down vote
accepted
up vote
5
down vote
accepted
Recall that rotation matrices are orthogonal therefore
$$A^-1=A^T$$
indeed note that
$$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
=beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$
Recall that rotation matrices are orthogonal therefore
$$A^-1=A^T$$
indeed note that
$$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
=beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$
edited Aug 27 at 6:35
answered Aug 27 at 6:29
gimusi
70.7k73786
70.7k73786
Perfect, thanks!
– aleksv
Aug 27 at 6:35
1
@aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
– gimusi
Aug 27 at 6:36
add a comment |Â
Perfect, thanks!
– aleksv
Aug 27 at 6:35
1
@aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
– gimusi
Aug 27 at 6:36
Perfect, thanks!
– aleksv
Aug 27 at 6:35
Perfect, thanks!
– aleksv
Aug 27 at 6:35
1
1
@aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
– gimusi
Aug 27 at 6:36
@aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
– gimusi
Aug 27 at 6:36
add a comment |Â
up vote
1
down vote
That's easy:
$$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
=beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$
add a comment |Â
up vote
1
down vote
That's easy:
$$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
=beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
That's easy:
$$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
=beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$
That's easy:
$$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
=beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$
answered Aug 27 at 6:30
md2perpe
6,53811023
6,53811023
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2895880%2finversion-of-rotation-matrix%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password