Inversion of rotation matrix

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












For example, I have a two-dimensional rotation matrix
$$
beginbmatrix
0.5091 & -0.8607 \
0.8607 & phantom-0.5091
endbmatrix
$$
and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.



My problem is to find an inverse of the rotation matrix so that I can later “undo” the rotation performed on the vector so that I get back the original vector.



The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.







share|cite|improve this question


























    up vote
    3
    down vote

    favorite












    For example, I have a two-dimensional rotation matrix
    $$
    beginbmatrix
    0.5091 & -0.8607 \
    0.8607 & phantom-0.5091
    endbmatrix
    $$
    and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.



    My problem is to find an inverse of the rotation matrix so that I can later “undo” the rotation performed on the vector so that I get back the original vector.



    The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.







    share|cite|improve this question
























      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite











      For example, I have a two-dimensional rotation matrix
      $$
      beginbmatrix
      0.5091 & -0.8607 \
      0.8607 & phantom-0.5091
      endbmatrix
      $$
      and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.



      My problem is to find an inverse of the rotation matrix so that I can later “undo” the rotation performed on the vector so that I get back the original vector.



      The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.







      share|cite|improve this question














      For example, I have a two-dimensional rotation matrix
      $$
      beginbmatrix
      0.5091 & -0.8607 \
      0.8607 & phantom-0.5091
      endbmatrix
      $$
      and I have a vector I'd like to rotate, e.g. $(1, -0.5)$.



      My problem is to find an inverse of the rotation matrix so that I can later “undo” the rotation performed on the vector so that I get back the original vector.



      The rotation matrix is not parametric, created via eigendecomposition, I can't use angles to easily create an inverse matrix.









      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Aug 27 at 10:34









      Jendrik Stelzner

      7,63121037




      7,63121037










      asked Aug 27 at 6:13









      aleksv

      396




      396




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          5
          down vote



          accepted










          Recall that rotation matrices are orthogonal therefore



          $$A^-1=A^T$$



          indeed note that



          $$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
          =beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$






          share|cite|improve this answer






















          • Perfect, thanks!
            – aleksv
            Aug 27 at 6:35






          • 1




            @aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
            – gimusi
            Aug 27 at 6:36

















          up vote
          1
          down vote













          That's easy:
          $$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
          =beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$






          share|cite|improve this answer




















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2895880%2finversion-of-rotation-matrix%23new-answer', 'question_page');

            );

            Post as a guest






























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            5
            down vote



            accepted










            Recall that rotation matrices are orthogonal therefore



            $$A^-1=A^T$$



            indeed note that



            $$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
            =beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$






            share|cite|improve this answer






















            • Perfect, thanks!
              – aleksv
              Aug 27 at 6:35






            • 1




              @aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
              – gimusi
              Aug 27 at 6:36














            up vote
            5
            down vote



            accepted










            Recall that rotation matrices are orthogonal therefore



            $$A^-1=A^T$$



            indeed note that



            $$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
            =beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$






            share|cite|improve this answer






















            • Perfect, thanks!
              – aleksv
              Aug 27 at 6:35






            • 1




              @aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
              – gimusi
              Aug 27 at 6:36












            up vote
            5
            down vote



            accepted







            up vote
            5
            down vote



            accepted






            Recall that rotation matrices are orthogonal therefore



            $$A^-1=A^T$$



            indeed note that



            $$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
            =beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$






            share|cite|improve this answer














            Recall that rotation matrices are orthogonal therefore



            $$A^-1=A^T$$



            indeed note that



            $$A^-1=beginbmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendbmatrix^-1
            =beginbmatrixcos(-alpha) & -sin(-alpha)\ sin(-alpha) & cos(-alpha)endbmatrix=beginbmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendbmatrix=A^T$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Aug 27 at 6:35

























            answered Aug 27 at 6:29









            gimusi

            70.7k73786




            70.7k73786











            • Perfect, thanks!
              – aleksv
              Aug 27 at 6:35






            • 1




              @aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
              – gimusi
              Aug 27 at 6:36
















            • Perfect, thanks!
              – aleksv
              Aug 27 at 6:35






            • 1




              @aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
              – gimusi
              Aug 27 at 6:36















            Perfect, thanks!
            – aleksv
            Aug 27 at 6:35




            Perfect, thanks!
            – aleksv
            Aug 27 at 6:35




            1




            1




            @aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
            – gimusi
            Aug 27 at 6:36




            @aleksv I've also added a simple way to see that assuming the opposite angle. You are welcome! Bye
            – gimusi
            Aug 27 at 6:36










            up vote
            1
            down vote













            That's easy:
            $$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
            =beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$






            share|cite|improve this answer
























              up vote
              1
              down vote













              That's easy:
              $$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
              =beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$






              share|cite|improve this answer






















                up vote
                1
                down vote










                up vote
                1
                down vote









                That's easy:
                $$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
                =beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$






                share|cite|improve this answer












                That's easy:
                $$beginpmatrixcosalpha & -sinalpha \ sinalpha & cosalphaendpmatrix^-1
                =beginpmatrixcosalpha & sinalpha \ -sinalpha & cosalphaendpmatrix$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Aug 27 at 6:30









                md2perpe

                6,53811023




                6,53811023



























                     

                    draft saved


                    draft discarded















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2895880%2finversion-of-rotation-matrix%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What does second last employer means? [closed]

                    List of Gilmore Girls characters

                    Confectionery