Find the determinant of a $3AA^t$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
I am trying to find the determinant of $3AA^t$ or $|3AA^t|$
where
$$A = beginbmatrix -1 & 2 \ 2 & 3endbmatrix$$
So I wind up getting:
$$|A| = -3 - 4 = -7 = A^t$$
so $$|3AA^t| = -3 * -7 * -7 = 147$$
Is this right?
My check fails though. I try to find $3AA^t$ and I get this:
$$3AA^t = 3 * beginbmatrix -1 & 2 \ 2 & 3 endbmatrix * beginbmatrix -1 & 2 \ 2 & 3 endbmatrix $$
$$ =beginbmatrix -3 & 6 \ 6 & 9 endbmatrix * beginbmatrix -1 & 2
\ 2 & 3 endbmatrix $$
$$= beginbmatrix -15 & 12 \ 12 & 39 endbmatrix $$
$$= 441$$
which does not $= 147$. Where did I go wrong?
linear-algebra matrices determinant
add a comment |Â
up vote
2
down vote
favorite
I am trying to find the determinant of $3AA^t$ or $|3AA^t|$
where
$$A = beginbmatrix -1 & 2 \ 2 & 3endbmatrix$$
So I wind up getting:
$$|A| = -3 - 4 = -7 = A^t$$
so $$|3AA^t| = -3 * -7 * -7 = 147$$
Is this right?
My check fails though. I try to find $3AA^t$ and I get this:
$$3AA^t = 3 * beginbmatrix -1 & 2 \ 2 & 3 endbmatrix * beginbmatrix -1 & 2 \ 2 & 3 endbmatrix $$
$$ =beginbmatrix -3 & 6 \ 6 & 9 endbmatrix * beginbmatrix -1 & 2
\ 2 & 3 endbmatrix $$
$$= beginbmatrix -15 & 12 \ 12 & 39 endbmatrix $$
$$= 441$$
which does not $= 147$. Where did I go wrong?
linear-algebra matrices determinant
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I am trying to find the determinant of $3AA^t$ or $|3AA^t|$
where
$$A = beginbmatrix -1 & 2 \ 2 & 3endbmatrix$$
So I wind up getting:
$$|A| = -3 - 4 = -7 = A^t$$
so $$|3AA^t| = -3 * -7 * -7 = 147$$
Is this right?
My check fails though. I try to find $3AA^t$ and I get this:
$$3AA^t = 3 * beginbmatrix -1 & 2 \ 2 & 3 endbmatrix * beginbmatrix -1 & 2 \ 2 & 3 endbmatrix $$
$$ =beginbmatrix -3 & 6 \ 6 & 9 endbmatrix * beginbmatrix -1 & 2
\ 2 & 3 endbmatrix $$
$$= beginbmatrix -15 & 12 \ 12 & 39 endbmatrix $$
$$= 441$$
which does not $= 147$. Where did I go wrong?
linear-algebra matrices determinant
I am trying to find the determinant of $3AA^t$ or $|3AA^t|$
where
$$A = beginbmatrix -1 & 2 \ 2 & 3endbmatrix$$
So I wind up getting:
$$|A| = -3 - 4 = -7 = A^t$$
so $$|3AA^t| = -3 * -7 * -7 = 147$$
Is this right?
My check fails though. I try to find $3AA^t$ and I get this:
$$3AA^t = 3 * beginbmatrix -1 & 2 \ 2 & 3 endbmatrix * beginbmatrix -1 & 2 \ 2 & 3 endbmatrix $$
$$ =beginbmatrix -3 & 6 \ 6 & 9 endbmatrix * beginbmatrix -1 & 2
\ 2 & 3 endbmatrix $$
$$= beginbmatrix -15 & 12 \ 12 & 39 endbmatrix $$
$$= 441$$
which does not $= 147$. Where did I go wrong?
linear-algebra matrices determinant
edited Aug 31 at 6:45
Asaf Karagila♦
294k31410737
294k31410737
asked Aug 30 at 22:18


Jwan622
1,75711224
1,75711224
add a comment |Â
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
9
down vote
accepted
If $A$ is an $n times n$ matrix, $det(3A) = det(3I) det(A) = 3^n det(A)$, not $3 det(A)$.
add a comment |Â
up vote
5
down vote
Because if $lambda$ is a scalar and $A$ is a $ntimes n$ matrix, then $det(lambda A)=lambda^ndet A$. That's why you only got $frac13$ of the right answer.
add a comment |Â
up vote
1
down vote
$3$ is a scalar and A is a $2×2$ matrix,then $det(3A)=3^2det(A)$.$$|3AA^t|=3^2×|AA^t|$$
$$|AA^t|=det left( beginbmatrix -1 & 2 \ 2 & 3 endbmatrix × beginbmatrix -1 & 2 \ 2 & 3 endbmatrix right)=detleft(beginbmatrix
5 & 4
\ 4 & 13endbmatrix right)=49$$ $|3AA^t|=9×49=441$.
Sorry if i do any mistake.
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
9
down vote
accepted
If $A$ is an $n times n$ matrix, $det(3A) = det(3I) det(A) = 3^n det(A)$, not $3 det(A)$.
add a comment |Â
up vote
9
down vote
accepted
If $A$ is an $n times n$ matrix, $det(3A) = det(3I) det(A) = 3^n det(A)$, not $3 det(A)$.
add a comment |Â
up vote
9
down vote
accepted
up vote
9
down vote
accepted
If $A$ is an $n times n$ matrix, $det(3A) = det(3I) det(A) = 3^n det(A)$, not $3 det(A)$.
If $A$ is an $n times n$ matrix, $det(3A) = det(3I) det(A) = 3^n det(A)$, not $3 det(A)$.
answered Aug 30 at 22:21
Robert Israel
306k22201443
306k22201443
add a comment |Â
add a comment |Â
up vote
5
down vote
Because if $lambda$ is a scalar and $A$ is a $ntimes n$ matrix, then $det(lambda A)=lambda^ndet A$. That's why you only got $frac13$ of the right answer.
add a comment |Â
up vote
5
down vote
Because if $lambda$ is a scalar and $A$ is a $ntimes n$ matrix, then $det(lambda A)=lambda^ndet A$. That's why you only got $frac13$ of the right answer.
add a comment |Â
up vote
5
down vote
up vote
5
down vote
Because if $lambda$ is a scalar and $A$ is a $ntimes n$ matrix, then $det(lambda A)=lambda^ndet A$. That's why you only got $frac13$ of the right answer.
Because if $lambda$ is a scalar and $A$ is a $ntimes n$ matrix, then $det(lambda A)=lambda^ndet A$. That's why you only got $frac13$ of the right answer.
answered Aug 30 at 22:23


José Carlos Santos
120k16101182
120k16101182
add a comment |Â
add a comment |Â
up vote
1
down vote
$3$ is a scalar and A is a $2×2$ matrix,then $det(3A)=3^2det(A)$.$$|3AA^t|=3^2×|AA^t|$$
$$|AA^t|=det left( beginbmatrix -1 & 2 \ 2 & 3 endbmatrix × beginbmatrix -1 & 2 \ 2 & 3 endbmatrix right)=detleft(beginbmatrix
5 & 4
\ 4 & 13endbmatrix right)=49$$ $|3AA^t|=9×49=441$.
Sorry if i do any mistake.
add a comment |Â
up vote
1
down vote
$3$ is a scalar and A is a $2×2$ matrix,then $det(3A)=3^2det(A)$.$$|3AA^t|=3^2×|AA^t|$$
$$|AA^t|=det left( beginbmatrix -1 & 2 \ 2 & 3 endbmatrix × beginbmatrix -1 & 2 \ 2 & 3 endbmatrix right)=detleft(beginbmatrix
5 & 4
\ 4 & 13endbmatrix right)=49$$ $|3AA^t|=9×49=441$.
Sorry if i do any mistake.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$3$ is a scalar and A is a $2×2$ matrix,then $det(3A)=3^2det(A)$.$$|3AA^t|=3^2×|AA^t|$$
$$|AA^t|=det left( beginbmatrix -1 & 2 \ 2 & 3 endbmatrix × beginbmatrix -1 & 2 \ 2 & 3 endbmatrix right)=detleft(beginbmatrix
5 & 4
\ 4 & 13endbmatrix right)=49$$ $|3AA^t|=9×49=441$.
Sorry if i do any mistake.
$3$ is a scalar and A is a $2×2$ matrix,then $det(3A)=3^2det(A)$.$$|3AA^t|=3^2×|AA^t|$$
$$|AA^t|=det left( beginbmatrix -1 & 2 \ 2 & 3 endbmatrix × beginbmatrix -1 & 2 \ 2 & 3 endbmatrix right)=detleft(beginbmatrix
5 & 4
\ 4 & 13endbmatrix right)=49$$ $|3AA^t|=9×49=441$.
Sorry if i do any mistake.
edited Aug 31 at 14:17
answered Aug 31 at 7:25


md emon
878
878
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2900100%2ffind-the-determinant-of-a-3aat%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password