Finding a quadratic equation using roots
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
If $x_1$ and $x_2$ are the roots of
$$ax^2+bx+c=0$$
then $x_1^3$ and $x_2^3$ are the roots of which equation?
So I tried by solving this for $x_1/2$ so I could change it in $(x-x_1^3)(x-x_2^3)$
$x_1/2=large-bpmsqrt4acover2a$
and from here:
$$beginalignx_1^3&=bigg(-b+sqrt4acover2abigg)^3\&=(sqrt4ac-b)^2(sqrt4ac-b)over8a^3\&=(4ac-2bsqrt4ac+b^2)(sqrt4ac-b)over8a^3\&=4acsqrt4ac-4abc-8abc-2b^2sqrt4ac+b^2sqrt4ac-b^3over8a^3\&=4acsqrt4ac-12abc-b^2sqrt4ac-b^3over8a^3endalign$$
but from here I realized it's probably pointless to do this since I wouldn't be able to use it, and I'm out of ideas.
quadratics
add a comment |Â
up vote
2
down vote
favorite
If $x_1$ and $x_2$ are the roots of
$$ax^2+bx+c=0$$
then $x_1^3$ and $x_2^3$ are the roots of which equation?
So I tried by solving this for $x_1/2$ so I could change it in $(x-x_1^3)(x-x_2^3)$
$x_1/2=large-bpmsqrt4acover2a$
and from here:
$$beginalignx_1^3&=bigg(-b+sqrt4acover2abigg)^3\&=(sqrt4ac-b)^2(sqrt4ac-b)over8a^3\&=(4ac-2bsqrt4ac+b^2)(sqrt4ac-b)over8a^3\&=4acsqrt4ac-4abc-8abc-2b^2sqrt4ac+b^2sqrt4ac-b^3over8a^3\&=4acsqrt4ac-12abc-b^2sqrt4ac-b^3over8a^3endalign$$
but from here I realized it's probably pointless to do this since I wouldn't be able to use it, and I'm out of ideas.
quadratics
Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
â Manthanein
45 mins ago
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
If $x_1$ and $x_2$ are the roots of
$$ax^2+bx+c=0$$
then $x_1^3$ and $x_2^3$ are the roots of which equation?
So I tried by solving this for $x_1/2$ so I could change it in $(x-x_1^3)(x-x_2^3)$
$x_1/2=large-bpmsqrt4acover2a$
and from here:
$$beginalignx_1^3&=bigg(-b+sqrt4acover2abigg)^3\&=(sqrt4ac-b)^2(sqrt4ac-b)over8a^3\&=(4ac-2bsqrt4ac+b^2)(sqrt4ac-b)over8a^3\&=4acsqrt4ac-4abc-8abc-2b^2sqrt4ac+b^2sqrt4ac-b^3over8a^3\&=4acsqrt4ac-12abc-b^2sqrt4ac-b^3over8a^3endalign$$
but from here I realized it's probably pointless to do this since I wouldn't be able to use it, and I'm out of ideas.
quadratics
If $x_1$ and $x_2$ are the roots of
$$ax^2+bx+c=0$$
then $x_1^3$ and $x_2^3$ are the roots of which equation?
So I tried by solving this for $x_1/2$ so I could change it in $(x-x_1^3)(x-x_2^3)$
$x_1/2=large-bpmsqrt4acover2a$
and from here:
$$beginalignx_1^3&=bigg(-b+sqrt4acover2abigg)^3\&=(sqrt4ac-b)^2(sqrt4ac-b)over8a^3\&=(4ac-2bsqrt4ac+b^2)(sqrt4ac-b)over8a^3\&=4acsqrt4ac-4abc-8abc-2b^2sqrt4ac+b^2sqrt4ac-b^3over8a^3\&=4acsqrt4ac-12abc-b^2sqrt4ac-b^3over8a^3endalign$$
but from here I realized it's probably pointless to do this since I wouldn't be able to use it, and I'm out of ideas.
quadratics
quadratics
asked 48 mins ago
Aleksa
25912
25912
Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
â Manthanein
45 mins ago
add a comment |Â
Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
â Manthanein
45 mins ago
Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
â Manthanein
45 mins ago
Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
â Manthanein
45 mins ago
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
HINT
We have
$$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$
$$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
and
$$x_1^3x_2^3=(x_1x_2)^3$$
$$x_1^3+x_2^3=?$$
Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
â Aleksa
38 mins ago
1
@Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
â gimusi
34 mins ago
Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
â Aleksa
31 mins ago
1
@Aleksa Yes I obtain the same result!
â gimusi
26 mins ago
add a comment |Â
up vote
3
down vote
Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.
The roots of the polynomial
$$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
HINT
We have
$$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$
$$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
and
$$x_1^3x_2^3=(x_1x_2)^3$$
$$x_1^3+x_2^3=?$$
Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
â Aleksa
38 mins ago
1
@Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
â gimusi
34 mins ago
Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
â Aleksa
31 mins ago
1
@Aleksa Yes I obtain the same result!
â gimusi
26 mins ago
add a comment |Â
up vote
4
down vote
accepted
HINT
We have
$$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$
$$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
and
$$x_1^3x_2^3=(x_1x_2)^3$$
$$x_1^3+x_2^3=?$$
Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
â Aleksa
38 mins ago
1
@Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
â gimusi
34 mins ago
Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
â Aleksa
31 mins ago
1
@Aleksa Yes I obtain the same result!
â gimusi
26 mins ago
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
HINT
We have
$$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$
$$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
and
$$x_1^3x_2^3=(x_1x_2)^3$$
$$x_1^3+x_2^3=?$$
HINT
We have
$$(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1x_2$$
$$(x-x_1^3)(x-x_2^3)=x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
and
$$x_1^3x_2^3=(x_1x_2)^3$$
$$x_1^3+x_2^3=?$$
answered 46 mins ago
gimusi
82.6k74091
82.6k74091
Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
â Aleksa
38 mins ago
1
@Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
â gimusi
34 mins ago
Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
â Aleksa
31 mins ago
1
@Aleksa Yes I obtain the same result!
â gimusi
26 mins ago
add a comment |Â
Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
â Aleksa
38 mins ago
1
@Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
â gimusi
34 mins ago
Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
â Aleksa
31 mins ago
1
@Aleksa Yes I obtain the same result!
â gimusi
26 mins ago
Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
â Aleksa
38 mins ago
Is this correct considering there's $a$? And I made a mistake in my question saying $(x-x_1^3)(x-x_2^3)$, it should be $(ax-x_1^3)(ax-x_2^3)$ I think
â Aleksa
38 mins ago
1
1
@Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
â gimusi
34 mins ago
@Aleksa As noticed we can divide wlog by $a$ and then consider an equation in the form x^2+Bx+C, or consider $$a(x-x_1)(x-x_2)=ax^2-a(x_1+x_2)x+ax_1x_2$$ $$a(x-x_1^3)(x-x_2^3)=ax^2-a(x_1^3+x_2^3)x+ax_1^3x_2^3$$ and proceed comapring the terms.
â gimusi
34 mins ago
Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
â Aleksa
31 mins ago
Yeah, you're right, I got $a^3x^2+b(b^2-3ac)x+c^3=0$, should be correct I think
â Aleksa
31 mins ago
1
1
@Aleksa Yes I obtain the same result!
â gimusi
26 mins ago
@Aleksa Yes I obtain the same result!
â gimusi
26 mins ago
add a comment |Â
up vote
3
down vote
Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.
The roots of the polynomial
$$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$
add a comment |Â
up vote
3
down vote
Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.
The roots of the polynomial
$$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.
The roots of the polynomial
$$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$
Let $B=b/a$ and $C=c/a$. Then $x_1$ and $x_2$ are the roots of $x^2+Bx+C$. Moreover, $x_1+x_2=-B$ and $x_1x_2=C$.
The roots of the polynomial
$$x^2-(x_1^3+x_2^3)x+x_1^3x_2^3$$
are $x_1^3$ and $x_2^3$. But $x_1^3x_2^3=C^3$ and $x_1^3+x_2^3=(x_1+x_2)(x_1^2-x_1x_2+x_2^2)=-B(B^2-3C)$
answered 43 mins ago
ajotatxe
51.5k23286
51.5k23286
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2990095%2ffinding-a-quadratic-equation-using-roots%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Hint: Just replace $x$ with $sqrt[3] x$ in the given quadratic to obtain required quadratic.
â Manthanein
45 mins ago