What will be the value of this binomial sum?
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
How to evaluate this binomial sum?
$$sum_r=1^nrn-1 choose r-1(k-1)^r-1$$
combinatorics summation binomial-coefficients
add a comment |Â
up vote
3
down vote
favorite
How to evaluate this binomial sum?
$$sum_r=1^nrn-1 choose r-1(k-1)^r-1$$
combinatorics summation binomial-coefficients
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
How to evaluate this binomial sum?
$$sum_r=1^nrn-1 choose r-1(k-1)^r-1$$
combinatorics summation binomial-coefficients
How to evaluate this binomial sum?
$$sum_r=1^nrn-1 choose r-1(k-1)^r-1$$
combinatorics summation binomial-coefficients
combinatorics summation binomial-coefficients
asked 3 hours ago
Debabrata
1235
1235
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
3
down vote
accepted
Hint: let $x=k-1$ begineqnarraysum_r=1^nrn-1 choose r-1x^r-1&=&Big(sum_r=1^nn-1 choose r-1x^r Big)'\
&=&Big(xunderbracesum_r=1^nn-1 choose r-1x^r-1 Big)'\
&=&Big(x(1+x)^n-1 Big)'\
endeqnarray
add a comment |Â
up vote
1
down vote
Hint:
$$rbinomn-1r-1=binomn-1r-1+(r-1)binomn-1r-1$$
$$=binomn-1r-1+(n-1)cdotdfrac(n-2)!(r-2)!(n-2)-(r-2)$$
$$=binomn-1r-1+(n-1)binomn-2r-2$$
Now put $x=y=1$ in $$(x+y)^m=sum_r=0^mbinom mr x^m-ry^r$$
Finally put $m=n-1$ and $m=n-2$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
Hint: let $x=k-1$ begineqnarraysum_r=1^nrn-1 choose r-1x^r-1&=&Big(sum_r=1^nn-1 choose r-1x^r Big)'\
&=&Big(xunderbracesum_r=1^nn-1 choose r-1x^r-1 Big)'\
&=&Big(x(1+x)^n-1 Big)'\
endeqnarray
add a comment |Â
up vote
3
down vote
accepted
Hint: let $x=k-1$ begineqnarraysum_r=1^nrn-1 choose r-1x^r-1&=&Big(sum_r=1^nn-1 choose r-1x^r Big)'\
&=&Big(xunderbracesum_r=1^nn-1 choose r-1x^r-1 Big)'\
&=&Big(x(1+x)^n-1 Big)'\
endeqnarray
add a comment |Â
up vote
3
down vote
accepted
up vote
3
down vote
accepted
Hint: let $x=k-1$ begineqnarraysum_r=1^nrn-1 choose r-1x^r-1&=&Big(sum_r=1^nn-1 choose r-1x^r Big)'\
&=&Big(xunderbracesum_r=1^nn-1 choose r-1x^r-1 Big)'\
&=&Big(x(1+x)^n-1 Big)'\
endeqnarray
Hint: let $x=k-1$ begineqnarraysum_r=1^nrn-1 choose r-1x^r-1&=&Big(sum_r=1^nn-1 choose r-1x^r Big)'\
&=&Big(xunderbracesum_r=1^nn-1 choose r-1x^r-1 Big)'\
&=&Big(x(1+x)^n-1 Big)'\
endeqnarray
edited 3 hours ago
answered 3 hours ago


greedoid
32k114287
32k114287
add a comment |Â
add a comment |Â
up vote
1
down vote
Hint:
$$rbinomn-1r-1=binomn-1r-1+(r-1)binomn-1r-1$$
$$=binomn-1r-1+(n-1)cdotdfrac(n-2)!(r-2)!(n-2)-(r-2)$$
$$=binomn-1r-1+(n-1)binomn-2r-2$$
Now put $x=y=1$ in $$(x+y)^m=sum_r=0^mbinom mr x^m-ry^r$$
Finally put $m=n-1$ and $m=n-2$
add a comment |Â
up vote
1
down vote
Hint:
$$rbinomn-1r-1=binomn-1r-1+(r-1)binomn-1r-1$$
$$=binomn-1r-1+(n-1)cdotdfrac(n-2)!(r-2)!(n-2)-(r-2)$$
$$=binomn-1r-1+(n-1)binomn-2r-2$$
Now put $x=y=1$ in $$(x+y)^m=sum_r=0^mbinom mr x^m-ry^r$$
Finally put $m=n-1$ and $m=n-2$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint:
$$rbinomn-1r-1=binomn-1r-1+(r-1)binomn-1r-1$$
$$=binomn-1r-1+(n-1)cdotdfrac(n-2)!(r-2)!(n-2)-(r-2)$$
$$=binomn-1r-1+(n-1)binomn-2r-2$$
Now put $x=y=1$ in $$(x+y)^m=sum_r=0^mbinom mr x^m-ry^r$$
Finally put $m=n-1$ and $m=n-2$
Hint:
$$rbinomn-1r-1=binomn-1r-1+(r-1)binomn-1r-1$$
$$=binomn-1r-1+(n-1)cdotdfrac(n-2)!(r-2)!(n-2)-(r-2)$$
$$=binomn-1r-1+(n-1)binomn-2r-2$$
Now put $x=y=1$ in $$(x+y)^m=sum_r=0^mbinom mr x^m-ry^r$$
Finally put $m=n-1$ and $m=n-2$
answered 2 hours ago
lab bhattacharjee
217k14153268
217k14153268
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2965788%2fwhat-will-be-the-value-of-this-binomial-sum%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password